
SemanticOn: Specifying Content-Based Semantic Conditions for
Web Automation Programs

Kevin Pu
jpu@dgp.toronto.edu
University of Toronto

Rainey Fu
rainey.fu@mail.utoronto.ca

University of Toronto

Rui Dong
ruidong@umich.edu

University of Michigan

Xinyu Wang
xwangsd@umich.edu
University of Michigan

Yan Chen
yanchen@dgp.toronto.edu
University of Toronto

Tovi Grossman
tovi@dgp.toronto.edu
University of Toronto

Step1: Specify conditions

56%

target website target website

prompt

SemanticOn

Conditions

Output data

Step2: Demonstrate actions Step3: Refine & repair

target website

???

a
a

a

b

c
d

e

f

g
h

Figure 1: The workflow of SemanticOn. There are three steps to creating a web automation program with semantic conditions using
SemanticOn. (Step 1) To specify semantic conditions, users can either describe their intent in text (User Enters, c○) or indicate the section of
interest by brushing through an image a○ or highlighting parts of a text b○ (System Suggests). SemanticOn then encodes these specifications
with computer vision and natural language processing techniques into web program conditions. (Step 2) To create the intended web
automation program, users demonstrate the actions on the website using WebRobot, including image downloading d○ and text scraping e○.
(Step 3) Once the program is executed, users can also easily coordinate with SemanticOn to refine the semantic conditions (f○, h○) or take
back control to add or remove data manually g○.

ABSTRACT
Data scientists, researchers, and clerks often create web automation
programs to perform repetitive yet essential tasks, such as data
scraping and data entry. However, existing web automation sys-
tems lack mechanisms for defining conditional behaviors where
the system can intelligently filter candidate content based on se-
mantic filters (e.g., extract texts based on key ideas or images based
on entity relationships). We introduce SemanticOn, a system that
enables users to specify, refine, and incorporate visual and textual
semantic conditions in web automation programs via two methods:
natural language description via prompts or information highlight-
ing. Users can coordinate with SemanticOn to refine the conditions
as the program continuously executes or reclaim manual control
to repair errors. In a user study, participants completed a series of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545691

conditional web automation tasks. They reported that SemanticOn
helped them effectively express and refine their semantic intent by
utilizing visual and textual conditions.

KEYWORDS
Web automation, PBD, user intent, semantics

ACM Reference Format:
Kevin Pu, Rainey Fu, Rui Dong, Xinyu Wang, Yan Chen, and Tovi Grossman.
2022. SemanticOn: Specifying Content-Based Semantic Conditions for Web
Automation Programs. In The 35th Annual ACM Symposium on User Interface
Software and Technology (UIST ’22), October 29-November 2, 2022, Bend, OR,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3526113.
3545691

1 INTRODUCTION
Enterprises, governments, and schools often use web-based ap-
plications to manage their businesses and services. Other than
information consumption, users such as clerks, data scientists, and
researchers often employ these web platforms to conduct tasks that
are repetitive yet essential, such as data scraping and data entry.
Performing these tasks manually can often lead to human errors
(e.g., data duplicates, missed entries), which can cause inefficiencies.

https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3526113.3545691
https://doi.org/10.1145/3526113.3545691

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Kevin Pu, et al.

Web automation offers a solution that leverages bots to mimic hu-
man interactions on web applications. It assists users with tedious
and recurring tasks and has proven to be faster and more accurate
for various task types compared to manual effort [42].

Past research has developed techniques to help users of all ex-
pertise levels to quickly and accurately create their intended web
automation programs [25–27, 44, 68]. However, these techniques
are limited to creating programs with requirements at the website
syntax or structural level (e.g., scraping the first two items in each
row of a table). Tools capable of creating logic based on the mean-
ing of the content (semantics) remain unexplored. For instance,
commercial tools such as iMacros [2] and UiPath [8] enable users
to perform record-and-replay interactions for web automation and
testing. Research tools such as Helena [15] further this technique by
lowering the learning curve, allowing users with little programming
experience to create complex programs that can handle hierarchical
data (e.g., tree-structured data) and distributed data spread across
multiple websites.

We identified a need for web automation with semantic con-
ditions through prior user studies [24] and analysis of real user
requests in online forms [3, 7]. This includes vision-related seman-
tic conditions, such as scraping images that meet specific criteria
(e.g., a photography student wants to study group interaction por-
traits on a gallery website with thousands of photos) or text-related
semantic conditions, such as scraping text only when it expresses
particular sentiments (e.g., a film critic wants to evaluate positive
reviews of a movie star’s acting from dozens of news articles in
a journal). With current techniques, users cannot specify these
semantic intents in web automation programs. As noted above,
semantic information often varies by content type, which makes
it hard to design a universal interaction that is both easy to use
and sufficiently expressive. Additionally, unlike other AI systems
that provide results immediately after the provision of user inputs
(e.g., chatbots), once executed, a web automation program will
continuously output results as it iterates over web contents. This
makes monitoring and error handling difficult, as the program may
encounter unforeseen and problematic cases.

This paper explores interactive techniques to enable content-
based semantic condition specification for web automation pro-
grams. We introduce SemanticOn,1 a system that allows users to
specify, refine, and incorporate visual and textual semantic informa-
tion as conditions in web automation programs via two methods:
natural language description via prompts or detailed information
highlighting with system support. We define them as User Enters
and System Suggests, respectively. SemanticOn combines the rel-
ative strengths of neural models (Transformer) for unstructured
information and program synthesis techniques for web automation.
By doing so, we introduce a new interaction paradigm for users to
continuously add/refine semantic conditions in a programming-by-
demonstration system. Specifically, SemanticOn builds upon We-
bRobot [24], a program synthesis system that enables users to create
web automation programs by demonstrating actions on the target
websites. WebRobot employs a no-code development approach that
requires only web interactions in place of programming knowledge
from users, which is consistent with our design goal.

1SemanticOn is an acronym for semantic condition

Figure 1 depicts the three steps of using SemanticOn. (Step 1) To
specify semantic conditions, users can either describe their intent
in a sentence (Fig. 1.c), indicate their area of interest by brushing
through an image (Fig. 1.a), or highlight parts of a text (Fig. 1.b).
SemanticOn uses similarity-based computer vision and natural lan-
guage processing techniques to encode these specifications into
web program conditions. (Step 2) To create the intended web au-
tomation program, users will demonstrate actions on the website
using WebRobot, including image downloading (Fig. 1.d) and text
scraping (Fig. 1.e). (Step 3) Once the program is executed, users
can also easily coordinate with SemanticOn to refine the semantic
conditions based on the automatically detected information (Fig. 1.f,
Fig. 1.h) or reclaim control to manually add or remove data if the
program has misjudged (Fig. 1.g). To our knowledge, SemanticOn
is the first system to explore content-based semantic specification
interactions for web automation programs.

We conducted a user study with 10 participants to evaluate
SemanticOn’s overall usability and efficiency and to compare the
semantic condition specification of each method (User Enters and
System Suggests). We found that participants using SemanticOn
successfully extracted 80.8% of the required data with an average
time of 06:10 minute:second per task. The participants found that
SemanticOn helped them effectively express their semantic intent
by prompting them to consider their visual and textual perceptions
of the tasks. We found a sense of control vs. effort trade-off, where
participants enjoyed composing their conditions in User Enters but
had to spend more time and mental effort devising a description
to encapsulate the semantic condition. On the other hand, while
participants could specify and refine conditions more easily via
highlighting content details and selecting generated conditions in
System Suggests, they had less freedom to express their intent when
system suggestions were inaccurate.

In the final section of this work, we analyze the human-AI collab-
oration workflow in SemanticOn, discuss the implications of adding
similarity-based models in a symbolic PBD system, and explore
future work that can adapt our approach to other types of interac-
tive AI systems that require semantic conditions. This work is an
essential step towards the vision of natural, intent-unambiguous
end-user programming with a focus on web automation creation.
This paper makes the following contributions:

� The User Enters, System Suggests interaction designs, imple-
mentations, and evaluations that allow users to specify and
demonstrate their intent during web automation creation,
� The refinement and error-handling techniques to clarify and
improve semantic filters in a continuous human-AI collabo-
ration process,
� SemanticOn, along with a user study showing its usability
and effectiveness in helping users specify semantic condi-
tions for web automation programs.

2 RELATEDWORK
SemanticOn builds on decades of web automation systems and
innovations. In this section, we draw our design goals and guid-
ance from three areas of work: web automation, programming-by-
demonstration, and user intent specification and refinement.

SemanticOn: Specifying Content-Based Semantic Conditions for Web Automation Programs UIST '22, October 29-November 2, 2022, Bend, OR, USA

2.1 Web Automation
Web automation is a software technique that leverages bots to
perform tedious and recurring web tasks by mimicking human
interactions, such as data entry and data extraction. Data scientists,
UI testers, and clerks all use web automation to help complete
their domain-speci�c tasks [40, 43, 49, 69]. Social scientists, for
example, might want to develop web data scraping programs to
collect necessary web datasets. UI testers might want to create an
automated browser testing program to help developers �nd front-
end defects. Data workers might envision a data entry program
for routine tasks like entering large amounts of data into a digital
system (e.g., booking �ights for all employees).

Creating web automation programs is a non-trivial and complex
task. Many web automation tools require users to have domain
knowledge (e.g., understand the Document Object Model (DOM)
structure) and programming experience. Commonly used tools like
Puppeteer [4], Selenium [6], Scrapy [5], and Beautiful Soup [1]
require users to learn code syntax, understand the task content
architecture (e.g., DOM tree hierarchy), and have software test-
ing experience. Prior work has shown that even for professional
developers, creating automation programs is time-consuming. Kros-
nick and Oney studied the challenges of writing web macros using
common web automation frameworks for experienced program-
mers [35]. They found that a primary challenge for participants
was the labor of checking syntactical element selectors to create
their programs, which was ine�cient and prone to mistakes. In
addition, the program might not generalize to cross-webpage se-
lections where the elements don't have syntactic similarity. Our
work enables users to specify the semantic meaning of their target
content, bypassing the issues caused by implementation.

Researchers have developed many helpful tools to reduce the
e�ort of program creation. For desktop application automation, sys-
tems like Sikuli [76] allow users to identify a GUI element (e.g., an
icon or a toolbar button) by taking its screenshot. Using computer vi-
sion techniques, it analyzes patterns in the screenshots to locate the
appropriate elements when automating GUI interactions. Although
this approach is promising, it requires programming knowledge
and cannot disambiguate similar elements or text information. For
UI testing, researchers have proposed and studied crowdsourcing
and automated testing strategies to help increase the testing cov-
erage and reduce the e�ort of creating programs [21, 23]. While
helpful, outputs produced with these tools are hard to generalize
to new UIs or contexts.

2.2 Programming-by-Demonstration
To further reduce the expertise required, many tools have used
a programming-by-demonstration (PBD) approach where users
only have to interact with the target applications rather than writ-
ing code [12, 36, 38]. These span a variety of application domains
including text manipulation [13, 39, 54, 60, 75], image or video edit-
ing [37, 47, 51], and GUI synthesis [55, 57, 61, 71]. In the context
of web applications, PBD delivers on this �rst design requirement,
o�ering web automation without requiring users to understand
browser internals or manually reverse-engineer target pages. The
PBD approach has produced great successes in the web automation

domain, most notably CoScripter [42], Vegemite [48], Rousillon [15],
and iMacros [2].

Some of these systems require users to edit their traces to add
parametrization. For instance, CoScripter and iMacros o�er record-
and-replay functionality; users record themselves interacting with
the browser�clicking, entering text, and navigating between pages�
and the tool writes a loop-free script that replays the recorded
interaction. Because they lack support for control constructs and
function composition, these systems require users to have logic
skills. Other systems support iteration using program synthesis,
automatically discovering loops given a demonstration of one or
a few iterations. While less domain knowledge is needed, the syn-
thesizer can make mistakes in which the user must provide more
demonstrations or edit the DSL to correct it (e.g., Helena), which
can be frustrating. SemanticOn instead allows users to e�ectively
coordinate with PBD systems by smoothly switching agency and
editing constraints at any time during program execution.

2.3 User Intent Speci�cation and Re�nement
User intent speci�cation is an important and challenging compo-
nent of human-AI collaboration. Ideally, users should be able to
easily and naturally specify their intent to a system while under-
standing its states. However, given the limited capabilities of AI
understanding techniques, high-level user intent can be di�cult
for systems to comprehend. Many systems have proposed bridg-
ing the gap between user intent and system understanding. For
instance, PLOW [9] and PUMICE [46] allow users to express con-
cepts (e.g., hot weather) in natural language and then learn the
concepts to generalize the automation. Systems like Scout [70],
Designscape [64], and Iconate [80] allow users to iteratively re�ne
their intent by directly manipulating the AI-generated artifacts.
Other studies have shown that this re�nement interaction can even
be delegated to crowd workers [18]. Another work, APPINITE [45],
also encapsulates user's intent in natural language instructions
and clari�es the intention in a back-and-forth conversation with
the AI. While these approaches are promising, user intents can
involve visual and cognitive details such as identifying visual re-
lationships in images or parsing texts to match a high-level idea.
The user's semantic level intents are often not fully or accurately
expressed through natural language or limited examples only, lead-
ing to information loss during communication and rendering the
communication ine�ective [19].

Similar to PBD systems, programming-by-example (PBE) is an-
other approach to facilitate program creation for various tasks such
as data wrangling [29, 30, 34] and data visualization [52, 72]. Many
PBE and PBD systems require users to provide additional examples
to disambiguate user intent. Falx allows users to specify visualiza-
tion examples using a small amount of data and then infers and
transforms the data to match the design [73]. Sporq allows users
to more accurately and quickly search code patterns in large code-
bases by prompting them to re�ne their intent by annotating a
batch of negative examples and adding speci�c constraints [58].
Other works enable users to directly annotate their input examples
(augmented examples) to disambiguate user intent [66, 78]. Or they
employ data visualization techniques to showcase the generated

UIST '22, October 29-November 2, 2022, Bend, OR, USA Kevin Pu, et al.

programs, allowing users to tweak the path of program genera-
tion in a tree view [77]. While promising, providing additional
examples increases users' cognitive demand. In this work, we focus
on addressing the ambiguous semantic conditions and designing
human-AI collaboration interaction solutions to help re�ne the
constraints based on the content.

Using machine learning (ML) models to re�ne intent has been a
recent focus in the �eld of interactive ML. One common interactive
ML approach allows users to o�er feedback during the model train-
ing process for more e�ective ML model creation [16]. Work by Cai
et al. allows users to adjust the search algorithm iteratively with
di�erent types of similarities at di�erent moments [14]. Projects
by Austin et al. and Jiang et al. allow users to interact with large
language models to help re�ne their intent when writing code
snippets [11, 33]. Work by Amershi et al. allows users to identify
new friend groups on social media by analyzing the examples pre-
sented [10]. Software developed by Fogarty et al. helps users to
create their own rules to improve the search results [28]. This re-
search inspires our work, but instead, we focus on helping users
re�ne their intent while interacting with continuous AI systems�
web automation programs that require constant monitoring and
that e�ectively coordinate the turn-taking.

3 BACKGROUND AND DESIGN GOALS
Our work is built upon an existing web automation system, We-
bRobot [24], that only uses web interactions and requires no pro-
gramming knowledge from its users. This is consistent with our
design goal. In addition to prior work, we derive our design goals
from WebRobot's user study. In this section, we provide necessary
background information on the WebRobot system and then discuss
the design goals for our system SemanticOn.

Figure 2: A screenshot of the WebRobot system UI.

3.1 The WebRobot System Work�ow
WebRobot is designed to facilitate web automation program cre-
ation. Figure 2 shows the WebRobot user interface. To create a
web automation program for a data entry or scraping task, a user

�rst starts recording their actions (Fig. 2.a). Then they can either
upload aJSON�le (Fig. 2.b) if the task involves data entry, or they
can choose an appropriate action (e.g., Scrape Text) in the action
panel (Fig. 2.c) and perform the required actions (e.g., clicking the
desired text data on the website). After each scraping action, they
will see the data appended to the output panel (Fig. 2.d). Behind
the scenes, WebRobot records every user action on the website and
its associated action type (e.g., Scrape Text). After a few demon-
strations, WebRobot synthesizes a programP from the traceA of
demonstrated actions. In particular, WebRobot guarantees thatP
not only reproducesthe demonstrated actions fromA but also gen-
eralizes beyondA. This typically impliesPwould contain loops that
can be used to automate the user-intended task. Finally, WebRobot
executesP to automate the rest of the actions in the task.

procedure Synthesize (A)
input: A = »a1; ��;am¼is a trace of user-demonstrated actions.
output: a programP that generalizesA.
1: P0 := a1; ��;am ;
2: W := f P0g; eP := ; ;
3: while W , ;
4: P := W:remove¹º;
5: if P generalizesA then eP:add¹Pº;

6: W 0 := Rewrite ¹Pº;
7: W := W [W 0;
8: return Rank¹ePº;

Algorithm 1: Rewrite-based program synthesis algo-
rithm.

3.2 WebRobot's Synthesis Algorithm
In a nutshell, WebRobot's synthesis algorithm (Algorithm 1) gen-
eralizes an input action traceA into a programP (with loops) by
iteratively rewriting A to loops inP from the inside out.Initially, it
creates a programP0 with exactly those actions inA (line 1): while
P0 reproducesA, it does not generalizeA (i.e., it does not produce
new actions afterA). Therefore, the algorithm performs iterative
rewriting to gradually �compress�P0 into more compact and gen-
eral programs using a worklist algorithm (lines 2-8). The worklist
W is initialized to have onlyP0, and we useeP to keep track of all
programs that generalizeA (line 2). WheneverW is not empty (line
3), the algorithm would remove a programPfromW (line 4). It then
checks to see whetherP generalizesA; if so,P is added toeP (line
5). After this, in line 6, the algorithm tries to rewriteP into more
general programs, which are stored inW 0. The key idea underlying
our Rewrite procedure is to performsemantic rewritingusing a
methodology calledspeculate-and-rewrite. Intuitively, it inspectsP,
identi�es repetitive patterns inP, hypothesizes potential loops that
correspond toP, and �nally synthesizes programs with one more
level of loop. How WebRobot's speculative writing process works
is beyond the scope of this work; we refer interested readers to the
original WebRobot paper [24] for details. OnceP is rewritten to a
new set of programsW 0 (line 6), the algorithm simply mergesW 0

into W (line 7). The worklist loop terminates when no programs

SemanticOn: Specifying Content-Based Semantic Conditions for Web Automation Programs UIST '22, October 29-November 2, 2022, Bend, OR, USA

can be rewritten and it �nally returns the smallest program ineP
using a ranking function (line 8).

3.3 User Feedback
In WebRobot's user study, participants reported that while We-
bRobot can help lower barriers of entry for the creation of web
automation programs and handling a more comprehensive range
of tasks, they wished that they could express conditions to �lter the
content. For instance, one participant said,�maybe some conditional
scraping [can be included], not based on whether the element exists
in the webpage, but based on some other conditions.�Consistently,
we found posts on forums such as iMacros [3] and Stack Over-
�ow [7] that request the creation of web automation programs with
content-based conditions. Participants also wished to re�ne their
intent when interacting with the WebRobot system. For instance,
participants reported that they wanted to�undo my wrong manipu-
lations� or �edit my history.� However, as noted in the related work,
WebRobot and other systems do not e�ectively support actions
such as undo or history manipulation.

3.4 Design Goals
Based on this prior work, we devised the following three design
goals to help users easily create web automation programs with
semantic conditions.

� DG1: Ability to express content-based semantic condi-
tions: Users can specify semantic conditions when creating
web automation programs.

� DG2: Accessible user intent re�nement: Users can iter-
atively re�ne their semantic conditions at any time of the
program creation process.

� DG3: Responsive error handling for mistakes made by
users and the system: Users need to modify inaccurate
conditions and edit scraped data easily.

Figure 3: SemanticOn's system architecture.

4 SEMANTICON
With the three design goals above, we created SemanticOn to help
users specify, re�ne, and incorporate semantic conditions in au-
tomated web data scraping. Figure 3 shows SemanticOn's system

architecture and main user interactions at a high level. Instead of
writing web macros from scratch for each website and �ltering the
scraped content in post-processing, users can interact with Seman-
ticOn to compose semantic conditions on the content they want
to scrape (Step 1 Fig. 3), then demonstrate actions on the target
website to synthesize automation programs for di�erent websites
without writing a single line of code (Step 2 Fig. 3). Throughout this
process, users can communicate with SemanticOn, which is capable
of parsing text and image content through machine learning models.
The users and SemanticOn work together to re�ne the condition
set and repair errors in result selection, continuously improving
both the system's and user's understanding of the �lter criteria
(Step 3 in Fig. 3). In this section, we �rst illustrate SemanticOn's
user experience with a sample scenario that embodies common
semantic conditions. We then detail the design and implementation
of SemanticOn.

4.1 The SemanticOn User Experience
Mia, an outdoor enthusiast, wants to extract online information
about travel destinations where outdoor activities are available. To
help her make an informed decision, Mia wants to scrape the text
description and the image for each location from an article to build
potential itineraries. One option is to read through every paragraph,
look at each picture, and manually copy and paste the relevant in-
formation, but that process would be tedious and repetitive. On the
other hand, Mia could write a web scraping script using Python. She
has some coding experience, but writing a script and �ltering the
results based on her preference would also be time-consuming and
laborious. Instead, Mia uses SemanticOn to e�ciently demonstrate
her conditions and web actions and synthesize a web automation
program that completes the task for her.

To begin, Mia sets the semantic conditions for the intended
content (Step 1 Fig.3). She �rst clicks �Text Condition�. She then
selectsUser Enters(Fig. 4.d) to specify the semantic condition in her
own words. Mia represents her high-level requirement in the system
prompt by typing, �This is a great location for outdoor activities�
(Fig. 6.c). She believes this sentence is likely semantically similar
to the relevant content in this article. After clicking �Add�, the
condition is appended to the text condition table (Fig. 4.h) in the
condition panel. Furthermore, Mia decides to add a condition to
the corresponding destination image. She wants to travel to a place
where hiking and water activities are accessible. To that end, she
usesSystem Suggests, clicks on an ideal image, and highlights the
mountain and lake in the picture (Fig. 6.a). The system detects
several objects and summarizes the image content into a sentence.
Mia also adds the relevant objects and caption to the corresponding
tables (Fig. 4.f,g) in the condition panel.

After specifying two initial conditions, Mia decides to start the
demonstration process (Step 2, Fig.3). She clicks the �Start Record-
ing� button (Fig. 4.a) to start the web macro recording for program
synthesis. Then, Mia speci�es the task name as �Travel Destination
Search� and sets the column number to 2, one for text descriptions
and one for the associated images.

Next, Mia selects �Download Image� and hovers the mouse to
highlight the desired image element (Fig. 4.j). As she clicks on the
element, the image is downloaded and put into the �rst column

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web Automation
	2.2 Programming-by-Demonstration
	2.3 User Intent Specification and Refinement

	3 Background and Design Goals
	3.1 The WebRobot System Workflow
	3.2 WebRobot's Synthesis Algorithm
	3.3 User Feedback
	3.4 Design Goals

	4 SemanticOn
	4.1 The SemanticOn User Experience
	4.2 Design and Implementation

	5 System Evaluation
	5.1 Participants
	5.2 Study Design
	5.3 Tasks
	5.4 Results

	6 Discussion
	6.1 Human-AI Collaboration
	6.2 Similarity-based Model in PBD Systems
	6.3 User Enters and System Suggests
	6.4 System Effectiveness
	6.5 System Limitations
	6.6 Future Work

	7 Conclusion
	Acknowledgments
	References
	A Appendix

