
Measuring Neural Efficiency of Program Comprehension
Janet Siegmund
University of Passau
Passau, Germany

Norman Peitek
Leibniz Institute for Neurobiology

Magdeburg, Germany

Chris Parnin
NC State University

Raleigh, North Carolina, USA

Sven Apel
University of Passau
Passau, Germany

Johannes Hofmeister
University of Passau
Passau, Germany

Christian Kästner
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Andrew Begel
Microsoft Research

Redmond, Washington, USA

Anja Bethmann
Leibniz Institute for Neurobiology

Magdeburg, Germany

André Brechmann
Leibniz Institute for Neurobiology

Magdeburg, Germany

ABSTRACT
Most modern software programs cannot be understood in their
entirety by a single programmer. Instead, programmers must rely
on a set of cognitive processes that aid in seeking, filtering, and
shaping relevant information for a given programming task. Sev-
eral theories have been proposed to explain these processes, such
as “beacons,” for locating relevant code, and “plans,” for encoding
cognitive models. However, these theories are decades old and lack
validation with modern cognitive-neuroscience methods. In this
paper, we report on a study using functional magnetic resonance
imaging (fMRI) with 11 participants who performed program com-
prehension tasks. We manipulated experimental conditions related
to beacons and layout to isolate specific cognitive processes related
to bottom-up comprehension and comprehension based on seman-
tic cues.We found evidence of semantic chunking during bottom-up
comprehension and lower activation of brain areas during com-
prehension based on semantic cues, confirming that beacons ease
comprehension.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods; Empirical studies in HCI;

KEYWORDS
functional magnetic resonance imaging, program comprehension,
neural efficiency

ACM Reference format:
Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeis-
ter, Christian Kästner, Andrew Begel, Anja Bethmann, and André Brech-
mann. 2017. Measuring Neural Efficiency of Program Comprehension. In
Proceedings of 2017 11th Joint Meeting of the European Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106268

Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17),
11 pages.
https://doi.org/10.1145/3106237.3106268

1 INTRODUCTION
During program comprehension, the eyes of programmers glide
across a computer screen. In just seconds, they can extract a deep
understanding from abstract symbols and text arranged in a source-
code file. Expert programmers are especially adept at program
comprehension of familiar code—their eyes dance around, finding
points of interest, called beacons (or semantic cues) that provide
hints about a program’s purpose, such as method signatures, and
common programming idioms. Top-down comprehension has been
used as an umbrella term to describe cognitive processes related to
experience and expectation that guide the understanding of source
code [7]. Researchers have also theorized that programmers must
use preformed knowledge structures, called plans, that represent
semantic and syntactical patterns of software [8]. For example,
an identifier bubbleSort indicates the presence of a sorting al-
gorithm and primes a programmer to expect other elements of
the bubble-sort algorithm, such as code related to a swap of array
elements.

In contrast, when code lacks familiar semantic cues, program-
mers must use bottom-up comprehension, a cognitive process that
involves obtaining meaning from every individual statement be-
fore synthesizing them into a holistic understanding of the entire
program [32]. Researchers theorized that programmers must hold
these elements in working memory, and through a process called
semantic chunking, they can abstract these pieces of information
into higher order concepts [39]. A previous study by Siegmund
and others looked at the process of bottom-up program compre-
hension with functional magnetic resonance imaging (fMRI) [40],
a technique used by to understand brain regions activated by cog-
nitive tasks. In that study, participants have been asked to read
short source-code snippets with obfuscated identifier names, such
that they could use only a bottom-up approach for comprehension;
no cues about the program’s purpose were present. The study’s
authors found a network of brain areas activated that are related to
natural-language comprehension, problem solving, and working

https://doi.org/10.1145/3106237.3106268
https://doi.org/10.1145/3106237.3106268

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister,
C. Kästner, A. Begel, A. Bethmann, and A. Brechmann

memory—all processes that fit well to our current understanding
of bottom-up program comprehension [40].

In this paper, we contrast bottom-up comprehension with com-
prehension aided by semantic cues. For many decades, researchers
have intensely debated these contrasting theories of program com-
prehension and the role of concepts such as semantic chunking,
plans, and semantic cues without any clear consensus. Some re-
searchers have argued that bottom-up comprehension cannot be
avoided because meaning always needs to be extracted from per-
ceptual and syntactical information. Others have argued that pro-
grammers actively avoid bottom-up comprehension because it is
an inherently tedious process with high cognitive load [44]. Still
others have debated the mechanics of how plans and semantic cues
are used in comprehension. The goal of this study is to understand
how comprehension with semantic cues differs from bottom-up
comprehension as cognitive processes in the brain. One possibil-
ity is that completely different brain areas can be activated when
semantic cues are available, which provides evidence of divergent
cognitive processes. Another possibility is that similar brain areas
can be activated by both processes; however, the processes differ in
neural efficiency. Neural efficiency is a phenomenon where lower
brain activation indicates that a cognitive process is more efficient
and thereby is perceived as easier [30].

To investigate these theories, we address three research ques-
tions:

RQ1: Can we replicate the results of the study by Siegmund
and others?
Since the original study was the first of its kind in software-
engineering research and set methodological standards, it
is important to replicate the results. If we succeed, we can
confirm the current understanding of bottom-up program
comprehension and solidify the role of fMRI as important
measurement instrument in software-engineering research.

RQ2: What is the difference between bottom-up program
comprehension and comprehensionwith semantic cues
in terms of activation and the brain areas involved?
Bottom-up comprehension is inherently a tedious and time-
consuming process and causes high cognitive load. In con-
trast, comprehension based on semantic cues is very effi-
cient, but requires previous experience and knowledge. The
intensity of activated brain areas and the intensity of acti-
vation should reflect these differences. Such a result would
strengthen our understanding of both bottom-up compre-
hension and comprehension based on semantic cues.

RQ3: How do layout and beacons in source code influence
program comprehension?
Different aspects of source code are believed to influence
program comprehension as semantic cues, such as beacons
(i.e., identifiers that indicate a program’s purpose) or the
program layout (e.g., indentation of nested loops). We will
test their impact in our study.

In our study, we asked programmers to read variations of sim-
ilar source-code snippets. Each variation differed in the intended
comprehension process, that is, bottom up vs. semantic cues. The
semantic cues variations additionally differed regarding beacons

(present or not) and layout (pretty-printed or disrupted). We con-
ducted the study in a 3-Tesla fMRI scanner at the Leibniz Institute
for Neurobiology in Magdeburg.

Most notably, our results confirm the activated areas of the orig-
inal study. This represents one important step toward establishing
fMRI as standard measurement technique to confirm our under-
standing of the role of various cognitive processes (e.g., language
comprehension, problem solving, working memory) in bottom-up
comprehension.We also found that comprehension based on seman-
tic cues required less activation in all areas compared to bottom-up
comprehension. This provides neurocognitive evidence for the com-
mon belief that comprehension based on semantic cues requires a
lower cognitive load than bottom-up comprehension. Beyond this,
we could not identify a clear effect of how identifiers and layout of
source code influence program comprehension, leaving our third
research question as yet unanswered.

In summary, we make the following contributions:
• We replicate the first fMRI study on bottom-up program
comprehension, providing more data to better understand
this central process in programming.

• We explore which cognitive processes are part of compre-
hension based on semantic cues.

• We provide evidence to strengthen the role of fMRI as mea-
surement technique for understanding program comprehen-
sion.

• We make all material and data available at the project’s Web
site.1

Our long-term research agenda looks toward better understand-
ing program comprehension (and related human activities) in soft-
ware engineering. We do this by extending current neurocognitive
models of program comprehension with new experimental data and
analysis. Eventually, this shall lead to better teaching methods (e.g.,
to train language comprehension, problem solving, and working
memory), which shall improve programming education and guide
the design of more effective programming tools and practices.

2 FMRI BACKGROUND
fMRI is a relatively new technique for the software engineering
research community, so we first give a short introduction to its
underlying principles.

When cognitive processes occur (e.g., visual perception), rele-
vant brain areas (e.g., the occipital cortex) activate, increasing the
amount of oxygen they need [23]. As the body responds by increas-
ing the amount of oxygenated blood in these areas, the amount of
deoxygenated blood decreases. Measuring changes to these levels is
called the BOLD (BloodOxygenation Level Dependent) response [9].
fMRI can detect the difference between the magnetic properties
of oxygenated and deoxygenated blood, enabling it to locate acti-
vated brain areas. The BOLD response begins at the onset of a task,
increases for several seconds until plateauing, and remains high
until the person finishes the task. After a few seconds, the ratio of
oxygenated and deoxygenated blood returns to its baseline value.

Many brain processes occur all the time, not only those that are
related to an experimenter’s task. To exclude processes that are
unrelated to an experiment’s goals, fMRI studies require a control
1https://github.com/brains-on-code/paper-esec-fse-2017/

https://github.com/brains-on-code/paper-esec-fse-2017/

Measuring Neural Efficiency of Program Comprehension ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: Code Snippets. Snippets in bold were part of the
study by Siegmund and others [40].

Semantic-cues Bottom-up Syntax

ArrayAverage CommonChars Average
BinaryToDecimal CrossSum DoubleArray
CrossSum DoubleArray Power
FirstAboveThreshold Factorial ReverseIntArray
Power MaxInArray ReverseWord
SquareRoot SumUpToN Swap
ContainsSubstrings
CountSameCharsAtSamePosition
CountVowels
IntertwineTwoWords
Palindrome
ReverseWord

condition. For example, when participants locate structural syntax
errors in the same or similar source-code snippets, comparable
visual perception also occurs, but not comprehension [40]. We can
look at the difference in activation between these two conditions,
which shows only the activation that is necessary for program
comprehension.

fMRI scanners do not make it easy to present code to participants.
To do so, we place a small mirror inside the machine near the partic-
ipant’s eyes, which can show about 20 lines of code. Unfortunately,
we prefer not to let participants scroll the text, because that could
introduce motion artifacts, inducing a bias in the measurement of
the BOLD response.

These methodological constraints (the time course of the BOLD
response, the need for a control condition, and physical space limi-
tations; more details can be found in Huettel and others [23]) lead
to a highly specialized experiment design, which we explain next.

3 EXPERIMENT DESIGN
Our first research question required us to replicate the experimen-
tal setup employed by Siegmund and others [40]. To address our
second and third research questions, we extended the setup by
including additional code snippets that facilitated program compre-
hension based on semantic cues. The fMRI session was preceded
by a training session, in which participants studied the code snip-
pets including semantic cues to gain familiarity with them. This
ensures that participants employ a comprehension process based
on semantic cues. Once in the fMRI scanner, participants looked at
a series of code snippets. For each code snippet, participants had to
determine whether it implemented the same functionality as one of
the snippets they looked at in the training session. To evaluate the
role of beacons and layout on comprehension based on semantic
cues, we created 4 versions of the semantic-cues snippets:

- Beacons and pretty-printed layout [BY, LP]
- Beacons and disrupted layout [BY, LD]
- No beacons and pretty-printed layout [BN, LP]
- No beacons and disrupted layout [BN, LD]

In the fMRI scanner, participants read snippets of all 4 versions,
enabling us to observe how each variation affected the activation
intensity and activated brain areas of participants. Based on these

Listing 1: Code snippet with beacons and pretty-printed lay-
out (BY, LP)
1 public float arrayAverage(int[] array) {
2 int counter = 0;
3 int sum = 0;
4
5 while (counter < array.length) {
6 sum = sum + array[counter];
7 counter = counter + 1;
8 }
9
10 float average = sum / (float) counter;
11 return average;
12 }

data, we draw conclusions on the cognitive processes that occurred
during program comprehension. In Figure 1, we give an overview
of the experiment-design process and the procedure.

Next, we describe the experimental setup in detail.We include the
design of the code snippets, the training session, and the imaging
setup used in the fMRI scanner. All material is also available at the
project’s Web site.

3.1 Experimental Conditions
3.1.1 Controlling Comprehension Strategy. To influence which

program comprehension strategy participants used, we introduced
several mechanics to control the content and presentation style of
code viewed during the experiment.

Bottom-up. For bottom-up comprehension, we need to ensure
that participants go through the source code statement by statement.
To this end, we use the same methodology as in the original study:
We obfuscated identifier names, such that they did not convey the
meaning of a variable, but only its usage (e.g., a variable holding the
result of an algorithm was named result, not reversedWord).
The snippets that we used for each condition are summarized in
Table 1. We made sure the snippets had comparable complexity and
length to maintain comparability to the study by Siegmund and
others [40].

This condition enables us to address RQ1 by replicating the
results from Siegmund and others [40].

Semantic Cues. For comprehension based on semantic cues, we
need to ensure that participants can find beacons related to ex-
pected code. Beacons give hints about a program’s purpose and
set corresponding expectations [7]. For example, a method named
arrayAverage implies that the method computes the average of
an array of numbers. Prior knowledge on averaging helps program-
mers to quickly confirm whether the method actually computes
the average. In Listing 1, we show a corresponding algorithm. The
reader should be able to spot the expected loop with the statements
to compute the sum and to increment the counter and, within sec-
onds, can confirm that this method indeed computes the average
of an array of numbers.

We also reused some snippets of the study by Siegmund and
others for the semantic-cues part of our experiment, but modified
them to be more amenable to comprehension based on semantic
cues (see Table 1 for the snippets that we used). Specifically, we

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister,
C. Kästner, A. Begel, A. Bethmann, and A. Brechmann

Experiment Preparation Experiment Execution

Selecting Code
Snippets

Creating
fMRI-Compatible
Code Snippets

Participant Training
before fMRI Session fMRI Session Debriefing Interview

after fMRI Session

Testing
Operationalization of
Layout & Beacons

Figure 1: Overview of Designing the Snippets and Conducting the fMRI Study

Listing 2: Code snippet with no beacons and disrupted lay-
out (BN, LD)
1 public float ayyaoAwyyaky(int[] array) {
2 int
3 mgqakyy
4 = 0;
5 int sum = 0;
6
7 while (mgqakyy
8 < array.length) {
9 sum =
10 sum + array[mgqakyy];
11 mgqakyy
12 = mgqakyy + 1;
13 }
14
15 float average
16 = sum /
17 (float) mgqakyy;
18 return
19 average;
20 }

added meaningful identifier names according to common Java cod-
ing conventions. For example, a variable containing a reversed word
is named reversedWord.

This condition contrasted with bottom-up comprehension en-
ables us to address RQ2.

3.1.2 Controlling Beacon and Layout Conditions. To further dis-
cern which source-code aspects guide comprehension based on
semantic cues, we created 4 different versions for each semantic-
cues code snippet. To do so, we manipulated two aspects of source
code that have been the focus of early studies on semantic-cues
comprehension and are believed to have a large impact on the
comprehension process: beacons [7] and layout [28]. As beacons
constitute a semantic aspect of source code, layout constitutes a
structural one. In this study, we look at how different program
layouts affect the comprehension process. If layout considerably
violates common coding conventions, it impairs comprehension
based on semantic cues. We show an example in Listing 2 with
blank lines and line breaks in unusual locations.

We created a snippet version for each combination of the two
aspects, that is: beacons and layout pretty (BY, LP), beacons and
layout disrupted (BY, LD), no beacons and layout pretty (BN, LP),
and no beacons and layout disrupted (BN, LD). All versions are
available at the project’s Web site.

These 4 variants of source code enable us to address RQ3. If bea-
cons and layout do affect comprehension, we should see a difference
in the activation pattern between these 4 conditions. If beacons
drive the comprehension process, but not layout, the beacon vari-
ants should lead to a different activation pattern than the variants

without beacons, independent of the layout style. Next, we describe
in detail the process of how we created the snippets.

3.2 Designing and Selecting Code Snippets
When using fMRI, it is necessary to compute averages over many
conditions [23], so we needed code snippets of similar size and
complexity. Furthermore, we had to choose short snippets that fit
on the screen inside the fMRI scanner to avoid scrolling. To develop
suitable snippets, we followed the procedure established in the
original study [40]. First, we conducted several pilot studies, from
which we requested feedback from participants, studied response
times, and determined correctness. Based on these data, we selected
snippets that did lead to our desired 20 to 30 second comprehension
time (the BOLD response needs this long for a solid measurement),
and did not cause too many incorrect answers. We excluded snip-
pets when participants indicated that they were unsuitable (e.g.,
requiring mainly visual search).

In the end, we selected 12 snippets that had all similar response
times, length, and complexity. The shortest snippet was 8 lines
long and the longest had 19 lines. The snippet in Listing 1, which
computes the average of an array, was included in our study. The
other snippets were similar in size and complexity.

We balanced the content of the snippets, such that 6 snippets
manipulated words (e.g., reverse a word), and 6 manipulated num-
bers (e.g., compute the average, factorial). This way, we ensured
that the content of a snippet did not overshadow the activation of
comprehension (e.g., in that actually words might result in a certain
activation pattern and not the comprehension process itself).

The biggest issue that we faced was to ensure that participants
spent 20 to 30 seconds to understand a snippet. Understanding small
code snippets with an approach based on semantic cues is very
efficient, so snippets like the one in Listing 1 are understandable
almost instantaneously, which makes it difficult to measure the
BOLD response. Thus, we decided to obfuscate the code through
word scrambling.

To find an optimal scrambling degree (i.e., so that we obtain
response times between 20 to 30 seconds, but do not bias the com-
prehension process), we conducted a series of small studies with
graduate students in computer science. The methodology is ex-
plained on the project’s Web site, as it would clutter the experi-
ment description here. In a nutshell, we first experimented with
scrambling the code to use Japanese characters, but found that it
interfered too much with program comprehension. Next, we tried
Caesar shifting (a cipher in which each letter is replaced by another
in a static scheme), which was more suitable to elicit comprehen-
sion based on semantic cues, but participants adapted to the shifting
(e.g., they learned that qom means int). Thus, we used a variable

Measuring Neural Efficiency of Program Comprehension ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Caesar shifting, such that each snippet was created with a differ-
ent scrambling scheme. Furthermore, we decided to not scramble
keywords and calls to library functions, to ensure that each code
snippet remained compilable.

Having found a suitable scrambling method, we evaluated the
operationalization of the independent variables. To this end, we
conducted two pilot studies with undergraduate computer-science
students at NC State University.

Testing Beacons. We conducted our first pilot study with 81 stu-
dents who were all junior and senior undergraduate students in a
software-engineering course. To ensure that participants can use
comprehension based on semantic cues for the snippets, we trained
them before the study. To this end, participants viewed, recalled,
and reviewed the snippets to establish familiarity with them. Sub-
sequently, we split the students into two groups: one worked with
beacons (BY) and the other without (BN). The participants had to
determine whether a code snippet fulfilled the same function as a
snippet from training as correctly and quickly as possible. At the
end of the study, students described their cognitive processes in an
online questionnaire (see the project’s Web site). They stated that
they indeed used comprehension based on semantic cues indepen-
dent of whether beacons were present or not. Their response times
also fit into our target interval of 20 to 30 seconds.

Testing Layout. To evaluate the operationalization of layout, we
conducted a second pilot study with 12 students who did not partic-
ipate in the first pilot. The overall design of the pilot study was the
same (train, understand, reflect), except that the tested snippets had
different layout with beacons present or not. The response times and
correctness were similar to the first pilot study and were suitable
for our purpose. The students reported that the cognition process
is challenged differently, but stayed within the understanding of
comprehension based on semantic cues. Thus, also the operational-
ization of layout proved suitable for our case.

3.3 Participants of the fMRI Study
We recruited 11 programmers from Otto von Guericke University
Magdeburg by posting on online and local bulletin boards. In addi-
tion to fulfilling the prerequisites for fMRI studies (e.g., no metallic
implants), participants needed to have basic knowledge in program-
ming and algorithms. Most participants were familiar with Java or
C, at least, at a medium level (answer on a 3-point scale). Only one
participant was rather inexperienced with both, Java and C, but
had 16 years of Python experience. We designed the snippets to
have minimal Java-specific features, and we clarified any questions
of participants during the training sessions.

The sample consisted of 5 computer-science students, 3 math-
ematics students, and 3 professional programmers; 2 participants
were female, and 9 were male. All participants were right-handed.
The participants’ mean age was 25.3 ± 3.82 years. The average
programming experience of participants was 1.699 ± 0.385 years,
indicating a medium level of programming experience compared
with typical computer science students [41].

3 participants agreed to a second session, which results in 14
measured fMRI sessions overall. Participants received 20 Euros
compensation per session.

3.4 Task Design
To replicate the study by Siegmund and others (RQ1), we used their
tasks: Participants should determine the output of code snippets
with given input values. Here, we also made sure to use easily
computable results (e.g., factorial of 3), to focus participants on
comprehending the program, not computing the output. As control
condition, participants also located syntax errors in code snippets,
which they had not seen before. None of the syntax errors required
participants to understand the code (e.g., they were missing semi-
colons or closing brackets).

To enable participants to use comprehension based on semantic
cues (RQ2 and RQ3), we familiarized them with the semantic-cues
snippets and required programming concepts in a training session
before they entered the fMRI scanner. Each code snippet had a
canonical representation, as would occur in a typical program (e.g.,
with beacons, pretty-printed layout, syntax highlighting, not scram-
bled). In training, participants viewed a snippet, recalled it, and
then reviewed it again. This was repeated for each snippet.

In the scanner, participants had to decide whether a snippet
correctly implemented the same functionality as the snippets seen
during training. This task involved recognizing a snippet’s purpose
and evaluating whether it was working as intended. Participants
had to decide as quickly and correctly as possible, with a time limit
of 30 seconds for each snippet.

3.5 Experiment Execution
We conducted the experiment at the Leibniz Institute for Neurobiol-
ogy in Magdeburg. When the participants arrived, they gave their
informed consent to participate in the study. Then, they completed
a questionnaire on their programming experience [41] and went
through the view-recall-review training of correct code snippets. In
total, the participants went through 12 trials, in randomized order
for each participant. One trial consisted of several tasks:

- Semantic-cues comprehension [BY, LP, 30 sec.]
- Rest [30 sec.]
- Semantic-cues comprehension [BY, LD, 30 sec.]
- Rest [30 sec.]
- Semantic-cues comprehension [BN, LP, 30 sec.]
- Rest [30 sec.]
- Semantic-cues comprehension [BN, LD, 30 sec.]
- Rest [30 sec.]
- Finding syntax errors or bottom-up comprehension [30 sec.]
- Rest [30 sec.]

From past experience, we know that participants have difficulty
lying motionless for more than 30 minutes while concentrating on
their tasks. The longer they stay in the scanner, the more restless
they get, which causes motion artifacts in the signal. So, we split the
12 trials into 2 sessions, each preceded by the view-recall-review
training outside the scanner. When the participants entered the
fMRI scanner, they spent their first 6 minutes conducting a pre-
trial set of measurements. Then, they looked at 4 semantic-cues
comprehension tasks (everyone used the same order) followed by al-
ternating bottom-up and syntax-error discovery tasks. Participants
could react to each task by pressing one of two buttons that they
held in their hand. In each condition, we asked the participants to
be as fast and correct as possible. After each trial, the participants
rested to allow their BOLD response to return to their baseline.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister,
C. Kästner, A. Begel, A. Bethmann, and A. Brechmann

Once the participants exited the fMRI scanner, we asked them
to explain to us how they solved the tasks. This gave us valuable
insights into their comprehension strategies, helping us interpret
the results.

3.6 Imaging Methods
Scanner Setting. We carried out the imaging sessions on a 3-

Tesla scanner (Philips Achieva dStream, Best, The Netherlands)
equipped with a 32-channel head coil. The heads of participants
were fixed with a cushion with attached ear muffs containing fMRI-
compatible headphones (MR Confon GmbH, Magdeburg, Germany).
Participants wore earplugs to further reduce scanner noise by 40 to
60 dB.We obtained a T1-weighted anatomical 3D data set with 1mm
isotropic resolution of the participant’s brain before the functional
measurement. To capture a whole-head fMRI, we acquired 930
functional volumes in 31min using a continuous EPI sequence
(echo time [TE]: 30ms; repetition time [TR]: 2000ms; flip angle,
90°; matrix size, 80 x 80; field of view, 24 cm x 24 cm; 35 slices of
3mm thickness with 0.3mm gaps).

Data Preparation. To process the data, we used BrainVoyager™QX
2.8.4 (www.brainvoyager.com).We preprocessed the functional data
with 3Dmotion correction, slice-scan-time correction, and temporal
filtering. The anatomical scan of each participant was transformed
into the standard Talairach brain [46] (to account for anatomical
differences between participants’ actual brains). Before group anal-
ysis, we spatially smoothed the functional data of each participant
with a Gaussian filter (FWHM=4 mm). Based on this transformation
and smoothing, we could look at the average activation over all
participants.

Analysis Procedure. We conducted a random-effects GLM anal-
ysis, defining one predictor for each of the comprehension tasks,
and one for the syntax task. To replicate the study by Siegmund
and others (RQ1), we calculated the contrast between bottom-up
comprehension and the syntax condition using the brain areas de-
fined in that study. To test for differences between bottom-up and
semantic-cues comprehension (RQ2), we calculated the balanced
contrast between the bottom-up condition and the 4 semantic-cues
conditions. To do this, we chose the same level of significance as
in the original study (i.e., p<0.01, FDR corrected). The resulting
clusters of voxels were defined as volumes of interest (VOI) and
attributed to their respective Brodmann areas (BA)2 by using the
Talairach daemon (www.talairach.org). Then, we extracted the beta
values of the GLM for each participant and condition to identify
differences in activation for each of the program comprehension
conditions within the defined VOIs.

4 RESULTS AND DISCUSSION
In this section, we present and discuss the results of our study,
structured along the research questions.

RQ1:CanWeReplicate theResults of the Study by Siegmund
and others?

2Brodmann areas serve as an anatomical classification system, such that the entire
brain is split into several areas on the basis of cytoarchitectonic differences suggested
to serve different functional brain processes [6].

Figure 2: Brodmann-area activation during comprehension
based on semantic cues.

Data. The region of interest analysis of the BAs 6, 21, 40, 44, and
47, as defined in the original study, revealed a significantly stronger
activation for bottom-up comprehension as compared with syntax-
error finding in BAs 21 (p<0.01), 40 (p<0.015), and 44 (p<0.01). For
BAs 6 and 47, the contrast was not significant.

Discussion. The result of the activation in BAs 21, 40, and 44
within the brain’s left hemisphere confirm the results of Siegmund
and others [40]. BAs 6 and 47 were not activated, which may be due
to individual anatomical differences between the participant groups
or the reduced statistical power of the current experiment (we only
had 3 blocks of bottom-up and syntax conditions, compared to
12 in the original study). In the original study, there were only
small activation differences in BA 47 and the region sizes of BA 6.
Nonetheless, we confirm that the activation of BAs 21 and 44, which
are closely related to natural- and artificial-language processing [2,
33, 43], are both integral to comprehend source code. The role of BA
21 lies in processing semantic information at theword level [1, 4, 14],
which takes place when participants extract the meaning of single
program tokens. BA 44 is believed to play an important role in
building syntactic structures [16, 18, 19]. Together with BA 40, they
all help to integrate relevant semantic information [16, 22].

In a recent EEG study on program comprehension [26], partic-
ipants also had to read code snippets derived from the study by
Siegmund and others [40]. The results showed that BAs 6 and 44
were activated, but they did not report data on other activated areas.

All of this evidence allows us to answer RQ1:

We can largely replicate the results of the study by Siegmund
and others.

RQ2: What is the difference between bottom-up program
comprehension and comprehension with semantic cues in
terms of activation and brain areas involved?

Data. Figure 2 shows the activated BAs, which contrast semantic-
cues with bottom-up comprehension. The areas largely overlapwith
those defined in the original study [40]. Specifically, BAs 21 and
44 in the brain’s left hemisphere are also activated. We also found
a significant effect in BA 6, albeit at a slightly different location

www.brainvoyager.com
www.talairach.org

Measuring Neural Efficiency of Program Comprehension ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Figure 3: Average BOLD response. BA 39 is activated/deacti-
vated in both hemispheres, BAs 6, 21, 40, and 44 in the left
hemisphere. Thewhiskers indicate the standard error of the
mean of the activation in the different participants.

compared to the previous study. The activation level during com-
prehension based on seamntic cues for all three areas is, however,
significantly lower than for bottom-up comprehension.

Figure 3 shows the activation averaged across the code snippets
for each condition (cf. Section 3). For example, the left group of bars
indicates the activation of BA 6 for 3 individual conditions, that
is, semantic-cues, bottom-up, and syntax errors. A positive value
indicates an activation. A negative value indicates a deactivation
in that area during the task, when compared to the average value
across the whole session (which includes resting time).

The BOLD response for BA 39 in both hemispheres shows a
deactivation during comprehension based on semantic cues and
activation during bottom-up comprehension. Thus, BA 39 showed
significantly less activation for semantic-cues than for bottom-up
comprehension as well as during rest (cf. Section 4).

Even though the direct contrast between bottom-up and semantic-
cues did not reveal significant activation in BA 40 at the conserva-
tive significance level, we show values for this region as defined
in the original study, because we found a significant difference
between bottom-up and syntax. This indicates that there is also a
considerable difference between the bottom-up and the semantic-
cues conditions.

Discussion. The activation of the BAs 6, 21, 40, and 44 indicates
that, for comprehension based on semantic cues, all participants
perform the same cognitive activities, that is, extracting the mean-
ing of words and symbols and combining them to create a general
understanding of a snippet’s purpose. There is evidence of a sim-
ilarity between semantic-cues and bottom-up comprehension at
a basic level, which implies a similarity between both processes.
However, we expected to observe activation in memory-related
areas, since theory suggests that comprehension based on semantic
cues should activate programming plans. Several possibilities exist:
1) Our participants may not have formed programming plans in
their minds due to low levels of expertise, 2) programming plans
are embedded in the same neural circuits as comprehension so
we cannot see differences in our study, or 3) the theory is simply

Figure 4: Response times in seconds per condition.

wrong. In future studies, we will dig deeper into the lack of memory
retrieval during comprehension based on semantic cues.

The lower activation strength in these brain areas corresponds
to better neural efficiency and indicates lower cognitive load. Thus,
we assert that program comprehension based on semantic cues
requires less cognitive effort than bottom-up comprehension. This
difference is not caused by differences in task length, since all tasks
lasted for 30 seconds. Looking at the response times of participants
in Figure 4, we see no difference between the experimental condi-
tions. The lower activation for comprehension based on semantic
cues aligns well with our understanding of both comprehension
processes suggesting that comprehension based on semantic cues
is more efficient than bottom-up comprehension. Note that this
is not reflected in the response times of participants, since we de-
signed the semantic-cues snippets to require the same time as the
bottom-up ones. Evidence from other neuro-imaging studies agrees
with our result. Crk and Kluthe found that expertise leads to lower
EEG signals (better neural efficiency), indicating lowered cognitive
load [11]. In our study, we primed the participants with the code
snippets (cf. Section 3), resulting in lower activation levels, and
indicating lowered cognitive load.

In BA 39, comprehension based on semantic cues led to less
activity compared with bottom-up comprehension and even the
resting condition. This particular brain area has been shown to
be part of the default mode network [34], which is active during
resting periods between cognitively demanding tasks (e.g., [47]).
Thus, the task context of program comprehension induces cognitive
processes during the resting condition (i.e., between the program-
comprehension tasks). The fact that the study by Siegmund and
others did not mention this brain area can be explained by the
roughly similar levels of activity in the bottom-up and the syntax
condition. Underestimating which brain areas are involved in cog-
nitive tasks is a common problem, especially for areas belonging
to the default brain network [45]. Thus, future fMRI studies must
be extra careful when devising their control conditions. Since BA
39 has been suggested to be involved in a number of cognitive
processes, such as semantic processing, word reading and com-
prehension, number processing, memory retrieval, attention, and
reasoning (which all seem relevant for all tasks of the current study),
it is crucial to replace the resting condition with tasks that distract
participants from activities related to program comprehension.

It is important to discern the degree of involvement of BA 39
in program comprehension, because it acts as a cross-modal hub,
in which converging multisensory information is combined and

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister,
C. Kästner, A. Begel, A. Bethmann, and A. Brechmann

integrated to comprehend and give sense to events, manipulate
mental representations, solve familiar problems, and reorient at-
tention to relevant information [38]. A promising starting point is
to compare program comprehension with natural-language read-
ing comprehension—the first function attributed to the angular
gyrus [13, 21]. Regarding deactivation relative to rest, it has been
suggested that reading affords fewer semantic associations than free
associating [5]. This may also be true for program comprehension
as applied to the current study.

Our control condition (locating syntax errors) was designed to
subtract activation related to visual processing of the source code.
We intended to avoid program comprehension by employing syntax
errors (e.g., a missing closing bracket) that could be completed by a
simple visual search. However, we did not find a difference in the
activation pattern between comprehension based on semantic cues
and syntax-error location.

On the one hand, it could mean that comprehension based on
semantic cues is very similar to locating syntax errors. Looking
at the tasks, it could be argued that deciding whether a snippet is
familiar to participants requires pattern matching rather than full
comprehension. On the other hand, the result could indicate that
for locating syntax errors, participants at least partially compre-
hended the source code. Evidence from other studies shows that
developers typically deploy an as-needed strategy. That is, they
use understanding only as necessary to get a task done [36]. This
validates the feedback we received from participants, who said
they were not able to ignore the functionality of the code when
reading it while locating errors. Syntax-error finding may mask
other cognitive processes related to semantic cues. We will look
into alternative control tasks, such as the bottom-up task, for future
studies.

Thus, we can answer RQ2:

Comprehension based on semantic cues activates the same
regions as bottom-up comprehension, except for BA 39, which
is deactivated during semantic-cues comprehension, but ac-
tivated during bottom-up comprehension. For all areas, the
activation is significantly lower for comprehension based on
semantic cues than for bottom-up comprehension.

RQ3: How do layout and beacons in source code influence
program comprehension?

Data. Finally, we compare our 4 different semantic-cues com-
prehension conditions with one another. Overall, we found no
significant differences, as supported by similar values of activation
in the brain areas depicted in Figure 5.

Discussion. We could not find any influence of beacons and lay-
out on program comprehension. This might indicate that the role
of beacons and layout for program compehension is different than
previous studies suggest [7, 28]. One reason may be due to our
operationalization of semantic cues, which may have encouraged
simple recognition of familiar snippets rather than comprehension.
The demand of program comprehension processes may have been
too low due to the intense engagement with highly comparable
code snippets immediately before the fMRI experiment. Neverthe-
less, the results make clear that the effects resulting from different

Figure 5: Average BOLD response. BA 39 is deactivated in
both hemispheres, BAs 6, 21, 40, and 44 are activated in the
left hemisphere. The whiskers indicate the standard error
of the mean of the activation in the different participants.

Figure 6: BOLD response per condition for BA 21.

efforts to foster comprehension seem to be small. We could in-
crease the experimental sensitivity by studying a larger number of
participants.

Still, we observed activation differences at specific time points
of comprehending the code snippets. For example, looking at the
BOLD response for BA 21 in Figure 6 for each of the 4 semantic-cues
conditions, we see that the versions with the beacons both have a
peak a few seconds after task onset, independent of whether the
layout was pretty-printed or disrupted. The temporal differences
may indicate differences in how long a programmer may spend in
specific phases of a cognitive process. It would be interesting to
explore whether one of these effect manifests in further studies,
because BA 21 is a classical natural-language processing area. More
introspective information about the dynamics during the program
comprehension are needed. Eye tracking during fMRI acquisition
may provide additional information and should be integrated in
future studies.
Neither beacons nor program layout seem to significantly
affect the program comprehension process.

5 PERSPECTIVES
5.1 Relation to Theories of Comprehension
The different activation patterns we see between semantic-cues and
bottom-up comprehension provide evidence in support of some

Measuring Neural Efficiency of Program Comprehension ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

aspects of theories of program comprehension, while casting doubt
on others.

Semantic Chunking. The theory of bottom-up comprehension
suggests that developers start with details of source code and group
these to semantic chunks, until they gain a high-level understanding
of the program [39]. Based on the activation of BA 39 during bottom-
up comprehension, and its role as an integration hub for semantic
information, the evidence supports semantic chunking. Its absence
during comprehension based on semantic cues is consistent with
successive hypothesis refinement [8].

Neural Efficiency. Studies of brain activity find that experts demon-
strate more efficient neuronal firing patterns than novices with the
same tasks [30]. More experienced programmers also demonstrate
lower activation than less experienced programmers [11, 12]. Simi-
larly, we have observed reduced activation during comprehension
based on semantic cues. Our evidence is consistent with the view
that semantic cues reduce cognitive load.

Plans. Software-engineering researchers have proposed that pro-
grammers use knowledge structures [35] called plans that encode
semantic and domain information about a program [8]. Researchers
theorized that programmers activate plans containing a high-level
schema of typical program structures when they find evidence in
support of their hypothesis about the code’s execution. Evidence
often comes in the form of beacons, such as method names and
stereotypical code sequences. Finally, it was proposed that pro-
grams follow basic rules of discourse, and that any violation to
“accepted conventions of programming” would hamper an experi-
enced programmer’s ability to use plans [44].

We found evidence that is inconsistent with some theoretical
aspects of plans. Unlike previous experiments that manipulated
syntax layout and beacons [44], we could not confirm any influence
on the cognitive processes developers used when comprehending
source code. Even if the code is scrambled or the layout is changed,
a programmer’s cognitive processes may be robust enough to deal
with them, just as programmers can understand code that is incom-
plete or has syntax errors. We did not find any specific cognitive
processes that would be consistent with plan activation outside of
the program comprehension process. An alternative theory may
be that, if plans exist, they are embedded in the same circuits used
during program comprehension. Overall reduced activation in the
network of program-comprehension brain areas may then be the
result of plan activation.

5.2 Implications and Future Directions
Tool Support. A recent fMRI study by Sato and others found that

having access to Euler diagrams during logical-reasoning tasks al-
lowed participants to offload the content of their working memory
used to represent the logical statements onto the diagram itself [37].
As a result, this freed up resources to solve the reasoning tasks
faster. The ability to support cognitive offloading has several im-
portant consequences. For example, the right hemisphere of the
brain can take on a secondary task if both the primary task and
secondary task are simple and do not require access to the same
types of information [10]. Both hemispheres are recruited in com-
plex tasks [3]. The diagram used by Sato and others would enable a

person to perform more complex logical-reasoning tasks, because
they can offload the representation onto the diagram. Likewise, if
a programming tool is able to free up cognitive resources, such as
a visualization or debugger tool, then programmers may be able
to perform increasingly complex cognitive tasks, both that were
not possible before, and with a reduced chance of mental errors. As
we found in our work, the programmer is better able to integrate
information when they do not have to perform semantic chunking.
If a tool could be found to reduce the need to activate a particular
brain region, then direct evidence could be offered about the ability
of a tool to reduce cognitive load and potential mental errors. In the
long run, this will help us and other researchers to develop tools
(e.g., those similar to debuggers that show how values of variables
change, but which are more customizable) that support developers
in relieving cognitive resources. Developers would then be able to
focus more on the actual task at hand, without being restricted by
their own cognitive limits.

Experimental Paradigm. Besides successfully replicating the re-
sults of the study by Siegmund and others, we went beyond the
state of the art by providing new evidence regarding the neural
efficiency of comprehension based on semantic cues. This paves
the way for fMRI and other neuro-imaging techniques to be used in
future research on program comprehension and related cognitive
processes. We wish to show that the lengthy process of conducting
series of pilot studies is worth the effort, so we can add a neuro-
scientific perspective to the understanding of human factors in
software engineering. With neuro-imaging studies becoming more
and more prevalent in software-engineering research (cf. Section 7),
our study makes an important contribution toward establishing
this modality as standard measurement instrument.

Future Studies. As a further avenue of research, we would like to
explore which aspects of source code have significant influence on
the comprehension process. In our study, we began this endeavor
by looking at beacons and layout, which prior work focused on.
In future studies, researchers should look at also other aspects of
code, such as patterns [27] and plans [35], and at various opera-
tionalizations of top-down program comprehension. This would
help the community to gain a more holistic understanding about
program comprehension. In the long run, this will allow us and
other researchers to derive new rules for how to semantically and
syntactically structure source code (for example, to highlight bea-
cons in source code). Furthermore, we hope that we can improve
programming education by helping novices to focus on relevant
parts of source code (e.g., to more quickly learn to identify and
make use of beacons).

6 THREATS TO VALIDITY
6.1 Internal Validity
The operationalization of comprehension based on semantic cues is
closely linked with recognition and may not require much compre-
hension. This might explain why we did not observe a difference
in activation between comprehension based on semantic cues and
syntax-error finding. However, since recognition is also important
for comprehension based on semantic cues, and because our partic-
ipants indicated that they did read the source code to locate syntax

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister,
C. Kästner, A. Begel, A. Bethmann, and A. Brechmann

errors, we argue that our current operationalization of comprehen-
sion based on semantic cues was suitable for the study.

Identifying BAs based on Talairach coordinates (used by scan-
ner software to identify voxels) requires a lot of expertise. Other
researchers may attribute the same activated clusters of voxels to
nearby Brodmann areas. However, our team has considerable ex-
perience with mapping voxels to Brodmann areas, and we double-
checked the assignments. Thus, we believe we have this threat
under control.

6.2 External Validity
Our limited experiment setup cannot generalize to program compre-
hension in different settings (for example, large software projects).
Additionally, our operationalization of comprehension based on
semantic cues captures only one aspect of this complex process,
meaning we may have missed some. This is a fundamental trade-off
in empirical studies, where we have to control external influences
as much as possible (internal validity), or strive for a more general-
izable experimental setting (external validity) [42]. Since we looked
at both bottom-up and semantic-cues comprehension, we increased
the external validity of the study by Siegmund and others.

7 RELATEDWORK
In recent years, several neuro-imaging techniques have been em-
ployed in software-engineering research. The first fMRI study in
this context was conducted by Siegmund and others [40], as we
have discussed.

Directly inspired by that study, Floyd and others also conducted
an fMRI study, but focused on a comparison of the representation
of programming and natural languages [17]. In their study, they
had developers review code and prose in an fMRI scanner, and then
compared brain activation. They used the activation patterns to
successfully predict which tasks participants were completing. This
is different from our study goal, which is to understand which brain
areas are activated during semantic-cues program comprehension.

Another fMRI study conducted by Duraes and others focused
on locating defects in software [15]. The authors found a stronger
activation in the right anterior insula, depending on whether a bug
was initially spotted compared to when it is confirmed.

Nakagawa and others used another neuro-imaging technique,
called functional near-infrared spectroscopy (fNIRS), to evaluate
the cerebral blood flow during mental code execution [29]. They
found increased blood flow in the prefrontal cortex that correlated
with the difficulty of a task. Ikutani and Uwano also used fNIRS in
a comprehension study and found an increased activation in the
frontal pole when participants memorized variable names without
manipulating their values [24].

Crk and Kluthe used electroencephalography (EEG) to observe
the influence of programmer expertise on EEG activation patterns
during program-comprehension tasks [11]. They found that lower
expertise led to higher cognitive load. Lee and others also used EEG
in a setting similar to the fMRI study by Siegmund and others [26].
Their study found a subset of the same brain areas as we did, which
also Siegmund and others found, that is, BAs 6 and 44. This confirms
the role of these areas in bottom-up program comprehension.

Parnin used electromyography (EMG) to measure subvocaliza-
tion (i.e., inner monologues) during programming [31]. He found
that developers use different levels of subvocalization for each task,
such as debugging and testing.

Many of these studies are explorative in nature. They evaluate
how particular neuro-imaging techniques can be applied in the
software-engineering domain. They all serve as a good starting
point to establish neuro-imaging techniques to better understand
human factors in software engineering.

In addition to single techniques, researchers have tried combin-
ing several measures. For example, Fritz and others [20] used a
setup in which they combined several psycho-physiological mea-
sures: EEG, eye tracking, and electrodermal activity. Participants
performed mental execution of code while instrumented with sen-
sors. The authors successfully used the combination of all three
sensor readings to predict the perceived task difficulty of the partic-
ipants. Lee and others used a combination of EEG and eye tracking
to predict task difficulty and programmer expertise [25]. They found
that both sensors, alone and in combination, could predict expertise
and task difficulty. Much like the study by Floyd and others [17],
the goal of these multi-sensor studies is to use the sensor data to
predict task difficulty or cognitive load.

8 CONCLUSION
Program comprehension based on semantic cues is a very efficient
process for understanding source code compared with the tedious,
statement-by-statement process employed during bottom-up com-
prehension. In this paper, we replicated an fMRI study to deepen
our understanding of program comprehension. First, we were able
to replicate the results of the previous fMRI study, confirming the
role of several Brodmann areas and related cognitive processes for
bottom-up program comprehension. This strengthens the role of
fMRI as important measurement instrument in software engineer-
ing research. Second, we found that program comprehension based
on semantic cues leads to a lower activation intensity as compared
to bottom-up comprehension, increasing support from a neuro-
science perspective for the hypothesis that comprehension based
on semantic cues leads to neural efficiency. Finally, we found no
evidence that beacons or program layout affect the comprehension
process. However, it may be that the effect is just too small to detect
with our experimental setup.

ACKNOWLEDGMENTS
We thank Anke Michalsky, Andreas Fügner, and Jörg Stadler for
fMRI data acquisition and all participants of our pilot studies and
the fMRI study. Kästner’s work has been supported by NSF awards
1318808 and 1552944, and Apel’s work by the DFG grants AP 206/4
and AP 206/6. Siegmund’s and Brechmann’s work is supported by
DFG grant SI 2045/2-1. Siegmund’s work is further funded by the
Bavarian State Ministry of Education, Science and the Arts in the
framework of the Centre Digitisation.Bavaria (ZD.B).

REFERENCES
[1] And Turken and Nina Dronkers. 2011. The Neural Architecture of the Language

Comprehension Network: Converging Evidence from Lesion and Connectivity
Analyses. Frontiers in Systems Neuroscience 5, 1 (2011).

Measuring Neural Efficiency of Program Comprehension ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

[2] Jörg Bahlmann, Ricarda Schubotz, and Angela Friederici. 2008. Hierarchical
Artificial Grammar Processing Engages Broca’s Area. NeuroImage 42, 2 (2008),
525–534.

[3] Marie T Banich. 1998. The missing link: the role of interhemispheric interaction
in attentional processing. Brain and Cognition 36, 2 (March 1998), 128–157.

[4] Jeffrey Binder, Rutvik Desai, William Graves, and Lisa Conant. 2009. Where Is
the Semantic System? A Critical Review and Meta-Analysis of 120 Functional
Neuroimaging Studies. Cerebral Cortex 19, 12 (2009), 2767–2796.

[5] Jeffrey R Binder, Julia A Frost, Thomas A Hammeke, PSF Bellgowan, Stephen M
Rao, and Robert W Cox. 1999. Conceptual Processing during the Conscious
Resting State: A Functional MRI Study. J. Cognitive Neuroscience 11, 1 (1999),
80–95.

[6] Korbinian Brodmann. 2006. Brodmann’s Localisation in the Cerebral Cortex.
Springer.

[7] Ruven Brooks. 1978. Using a Behavioral Theory of Program Comprehension
in Software Engineering. In Proc. Int. Conf. Software Engineering (ICSE). IEEE,
196–201.

[8] Ruven Brooks. 1983. Towards a Theory of the Comprehension of Computer
Programs. Int. J. Man-Machine Studies 18, 6 (1983), 543–554.

[9] B Chance, Z Zhuang, C UnAh, C Alter, and Lipton L. 1993. Cognition-Activated
Low-Frequency Modulation of Light Absorption in Human Brain. Proc. Nat.
Academy Sciences of the United States of America (PNAS) 90, 8 (1993), 3770–3774.

[10] Sylvain Charron and Etienne Koechlin. 2010. Divided Representation of Con-
current Goals in the Human Frontal Lobes. Science 328, 5976 (16 April 2010),
360–363.

[11] Igor Crk and Timothy Kluthe. 2014. Toward Using Alpha and Theta Brain Waves
to Quantify Programmer Expertise. In Proc. Int. Conf. Engineering in Medicine
and Biology Society (EMBC). IEEE, 5373–5376.

[12] Igor Crk, Timothy Kluthe, and Andreas Stefik. 2015. Understanding Programming
Expertise: An Empirical Study of Phasic Brain Wave Changes. ACM Trans.
Comput.-Hum. Interact. 23, 1, Article 2 (Dec. 2015), 29 pages.

[13] J Dejerine. 1891. Sur un cas de Cecite Verbale avec Agraphie, Suivi d’Autopsie.
C. R. Societe de Biologie 43 (1891), 197–201.

[14] Nina F Dronkers, David P Wilkins, Robert D Van Valin, Brenda B Redfern, and
Jeri J Jaeger. 2004. Lesion Analysis of the Brain Areas Involved in Language
Comprehension. Cognition 92, 1–2 (2004), 145–177.

[15] João Duraes, Henrique Madeira, J Castelhano, C Duarte, and M Castelo Branco.
2016. WAP: Understanding the Brain at Software Debugging. In Proc. Int. Symp.
Software Reliability Engineering (ISSRE). IEEE, 87–92.

[16] Christian J Fiebach, Matthias Schlesewsky, Gabriele Lohmann, D Yves Von Cra-
mon, and Angela D Friederici. 2005. Revisiting the Role of Broca’s Area in
Sentence Processing: Syntactic Integration Versus Syntactic Working Memory.
Human Brain Mapping 24, 2 (2005), 79–91.

[17] Benjamin Floyd, Tyler Santander, and Westley Weimer. 2017. Decoding the
Representation of Code in the Brain: An fMRI Study of Code Review and Expertise.
In Proc. Int. Conf. Software Engineering (ICSE). IEEE.

[18] Angela D Friederici. 2002. Towards a Neural Basis of Auditory Sentence Process-
ing. Trends in Cognitive Sciences 6, 2 (2002), 78–84.

[19] Angela D Friederici and Sonja AKotz. 2003. The Brain Basis of Syntactic Processes:
Functional Imaging and Lesion Studies. NeuroImage 20, 1 (2003), S8–S17.

[20] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, andManuela
Züger. 2014. Using Psycho-physiological Measures to Assess Task Difficulty in
Software Development. In Proc. Int. Conf. Software Engineering (ICSE). ACM,
402–413.

[21] Norman Geschwind. 1965. Disconnexion Syndromes in Animals and Man. Brain
88, 2 (1965), 237–294.

[22] Yosef Grodzinsky and Andrea Santi. 2008. The Battle for Broca’s Region. Trends
in Cognitive Sciences 12, 12 (2008), 474–480.

[23] Scott A Huettel, AllenW Song, and Gregory McCarthy. 2004. Functional Magnetic
Resonance Imaging. Vol. 1. Sinauer Associates Sunderland.

[24] Yoshiharu Ikutani andHidetake Uwano. 2014. Brain ActivityMeasurement during
Program Comprehension with NIRS. In Proc. Int. Conf. Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD).
IEEE, 1–6.

[25] Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and Heuiseok Lim. 2017.
Mining Biometric Data to Predict Programmer Expertise and Task Difficulty.

Cluster Computing (2017), 1–11.
[26] SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim, JaeBum Jung,

GiChun Nam, and HeuiSeok Lim. 2016. Comparing Programming Language
Comprehension between Novice and Expert Programmers Using EEG Analysis.
In Proc. Int. Conf. Bioinformatics and Bioengineering (BIBE). IEEE, 350–355.

[27] Richard C Linger, Harlan D Mills, and Bernard I Witt. 1979. Structured Program-
ming: Theory and Practice. (1979).

[28] Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman.
1983. Program Indentation and Comprehensibility. Commun. ACM 26, 11 (1983),
861–867.

[29] Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi
Matsumoto, and Daniel M. German. 2014. Quantifying Programmers’ Mental
Workload During Program Comprehension Based on Cerebral Blood Flow Mea-
surement: A Controlled Experiment. In Proc. Int. Conf. Software Engineering (ICSE).
ACM, 448–451.

[30] Aljoscha C. Neubauer and Andreas Fink. 2009. Intelligence and neural efficiency.
Neuroscience and Biobehavioral Reviews 33, 7 (10 July 2009), 1004–1023.

[31] Chris Parnin. 2011. Subvocalization — Toward Hearing the Inner Thoughts of
Developers. In Proc. Int. Conf. Program Comprehension (ICPC). IEEE, 197–200.

[32] Nancy Pennington. 1987. Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs. Cognitive Psychologys 19, 3 (1987),
295–341.

[33] Karl Petersson, Vasiliki Folia, and Peter Hagoort. 2012. What Artificial Grammar
Learning Reveals about the Neurobiology of Syntax. Brain and Language 298,
1089 (2012), 199–209.

[34] Marcus Raichle, AnnMacLeod, Abraham Snyder,William Powers, Debra Gusnard,
andGordon Shulman. 2001. ADefaultMode of Brain Function. Proc. Nat. Academy
of Sciences 98, 2 (2001), 676–682.

[35] Charles Rich. 1981. Inspection Methods in Programming. Technical Report TR-604.
MIT.

[36] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
Do Professional Developers Comprehend Software?. In Proc. Int. Conf. Software
Engineering (ICSE). IEEE, 255–265.

[37] Yuri Sato, Sayako Masuda, Yoshiaki Someya, Takeo Tsujii, and Shigeru Watanabe.
2015. An fMRI Analysis of the Efficacy of Euler Diagrams in Logical Reasoning.
In Proc. Symp. on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 143–151.

[38] Mohamed L Seghier. 2013. The Angular Gyrus: Multiple Functions and Multiple
Subdivisions. The Neuroscientist 19, 1 (2013), 43–61.

[39] Ben Shneiderman and Richard Mayer. 1979. Syntactic/Semantic Interactions
in Programmer Behavior: A Model and Experimental Results. Int. J. Parallel
Programming 8, 3 (1979), 219–238.

[40] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
Understanding Source Code with Functional Magnetic Resonance Imaging. In
Proc. Int. Conf. Software Engineering (ICSE). IEEE, 378–389.

[41] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and Modeling Programming Experience. Empirical Softw. Eng.
19, 5 (Oct. 2014), 1299–1334.

[42] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal and
External Validity in Empirical Software Engineering. In Proc. Int. Conf. Software
Engineering (ICSE), Vol. 1. IEEE, 9–19.

[43] P Skosnik, F Mirza, D Gitelman, T Parrish, M Mesulam, and P Reber. 2008. Neural
Correlates of Artificial Grammar Learning. NeuroImage 17, 3 (2008), 1306–1314.

[44] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-
edge. IEEE Trans. Softw. Eng. 10, 5 (1984), 595–609.

[45] Craig EL Stark and Larry R Squire. 2001. When Zero is Not Zero: The Problem
of Ambiguous Baseline Conditions in fMRI. Proc. Nat. Academy Sciences of the
United States of America (PNAS) 98, 22 (2001), 12760–12766.

[46] Jean Talairach and Pierre Tournoux. 1988. Co-Planar Stereotaxic Atlas of the
Human Brain. Thieme.

[47] Miranka Wirth, Kay Jann, Thomas Dierks, Andrea Federspiel, Roland Wiest,
and Helge Horn. 2011. Semantic Memory Involvement in the Default Mode
Network: A Functional Neuroimaging Study Using Independent Component
Analysis. NeuroImage 54, 4 (2011), 3057–3066.

	Abstract
	1 Introduction
	2 fMRI Background
	3 Experiment Design
	3.1 Experimental Conditions
	3.2 Designing and Selecting Code Snippets
	3.3 Participants of the fMRI Study
	3.4 Task Design
	3.5 Experiment Execution
	3.6 Imaging Methods

	4 Results and Discussion
	5 Perspectives
	5.1 Relation to Theories of Comprehension
	5.2 Implications and Future Directions

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Related Work
	8 Conclusion
	References

