
Debugging Debugging
MindsMinds

2

The Story So Far …
● We want to deliver and support a quality

software product
● Software processes are carried out by

humans
● We can measure brain activity
● Productivity and expertise involve different

levels of brain activity
● Today: What neural activities are associated

with SE and how can their measurements guide
process decisions?

3

One-Slide Summary
● Software measurement can be misleading for

process decisions involving humans.
● Many complexity metrics do not correlate with

neural activity. Metrics based on data dependency
do correlate with cognitive load.

● Context is seen as a positive factor for code
comprehension, but more context hurts quality.

● We can control neural activity to probe causality
and learn which measurements are valid. Cognitive
enhancements (based on valid measurements) can
impact software engineering outcomes.

4

Setting the Stage
● In this class, you’ve practiced and considered

decisions for improving SE outcomes:
● HW2: Which test generator tool … ?
● HW4: Which static analysis tool … ?
● HW5: Is delta debugging good for task X … ?

● We want more practice making critical decisions
● How do we pick the good thing and not the fad
● Especially when human cognition is involved!
● We will begin with code comprehension

5

What we already know
● Lines of Code, McCabe's Cyclomatic Complexity,

and Halstead Volume are software metrics
● They may help estimate software development,

comprehension or testing costs (?)
● These metrics often have validity problems

● We end up measuring what’s easy, not what matters
● Metrics can be misinterpreted or encourage

wrong behaviors

6

Complexity Metrics in Practice

● Microsoft Visual Studio uses Cyclomatic
Complexity + Maintainability Index to flag “risk
and maintainability issues”

● NASA (SWE-220) requires Cyclomatic
Complexity <= 15 for safety critical modules

● Google developers cite complexity (LOC,
branches, etc.) as a trigger for refactoring

● What is the underlying assumption here?
● Higher Complexity Score =? Harder for Humans to

understand and thus to maintain

7

What Metrics Measure
(Do Metrics Actually Measure How Hard it is to Read Code?)

● Studies suggest developers use strategies like
Top-down or Bottom-up comprehension to
understand code
● We may use beacons and rely on our

experience to ease code understanding
● Core question: do structural metrics like

McCabe actually reflect the mental effort
required for human comprehension?

● Let’s see!

8

Study Overview

● Developers (n=19) read short code snippets,
answered comprehension questions, and rated
how difficult it was.

● Record cognitive effort (fMRI), response times,
accuracy and subjective judgments of difficulty

● The 16 Java code snippets varied in
● LOC, Vocabulary size (Halstead), Control flow (McCabe),

Data-flow dependencies (DepDegree ‘NEW’)

[Siegmund et al., "Measuring Neural Efficiency of Program Comprehension",
ESEC/FSE 2017]

9

Finding #1: Code Size and
Vocabulary Impact Cognitive Load

“Cognitive
load”

SE

With your team,
what patterns
do you spot?

10

Finding #1: Code Size and
Vocabulary Impact Cognitive Load

● LOC BA 21 activation: τ = .32→
● Halstead BA 6/21/39: τ = .32–.40→
● LOC & Halstead DMN deactivation: τ = –.30→
● Meaning, longer or symbol-heavy code

increases semantic processing and working
memory demand

● Size matters because it affects mental
workload, not because it contains more logic.

[Siegmund et al., "Measuring Neural Efficiency of Program Comprehension",
ESEC/FSE 2017]

11

Explaining DepDegree

● DepDegree is a simple indicator of complex
dependencies. The more dependencies a program
operation has, the more different program states
have to be considered “by the human” and the more
difficult “for the human” it is to understand the
operation.

With your team,
which ones of these

has a bug ?

Which is harder to
 understand?

12

Explaining DepDegree

● DepDegree is a simple indicator of complex
dependencies. The more dependencies a program
operation has, the more different program states
have to be considered “by the human” and the more
difficult “for the human” it is to understand the
operation.

LOC = 3
McCabe = 1 LOC = 3

McCabe = 1

What scores would these
methods get in other metrics?

13

Explain ‘DepDegree’

14

Explain ‘DepDegree’

Which data flow
analysis computes

this information
about the variable
being used later?

15

Explain DepDegree

LOC = 3
McCabe = 1
DepDegree = 6

LOC = 3
McCabe = 1
DepDegree = 3

16

Finding #2: Data flow complexity
makes comprehension hard

● Working memory and semantic processing have
a medium-strong correlation with DepDegree

(vs. no correlation with McCabe …)
● Interpretation: tracking state and variable

dependencies is hard for humans!

17

Prior Lecture
● [Code Inspection and The Brain Lecture]
● Do you think it would take you longer to

maintain code if it looked like this?

18

Prior Lecture
● [Code Inspection and The Brain Lecture]
● Do you think it would take you longer to

maintain code if it looked like this?
● Perhaps counter-intuitively: no!

19

When can we trust self-reporting?
(What do we know so far?)

● How good you are at something (self-reported efficacy) [Productivity
Lecture] (Humans aren’t good at judging self-expertise)

● What makes code hard to read (presence of comments vs blank lines)
[Design for Maintainability Lecture] (normative vs. descriptive metrics)

● How long will it take me to comprehend code [Code Inspection and the
Brain Lecture]

● How hard is it to comprehend code (brain activity) [Code Inspection
and the Brain Lecture]

● This paper also finds developers’ own feelings of
difficulty to correlate strongly with actual performance
● Subjective rating correctness: τ = –.77 (strong)→
● Subjective rating cognitive load: τ = –.69→

20

Finding #3: Subjective complexity
predicts performance

● Developers’ own feelings of difficulty correlated
strongly with actual performance.

● We don’t have evidence that developers know how
hard something will be in the future, but they can
more confidently say how hard something is currently

● Takeaways for future devs and team leads:
● Self-reporting about future scheduling may be less

reliable (unlike COCOMO, which can predict costs).
Self-reporting for current difficulties is OK.

● Use the right information source when making
process decisions involving humans

21

Example Industry Use: SonarQube

22

Next Paper ...

23

Going Beyond Beacons

● Code features like beacons (semantic cues,
method names) impact code comprehension

● But developers might also want to know:
● What calls this method? (caller context)
● What does this method call? (callee context)
● Static and dynamic analysis represent these as a

Call Graph, but an explicit graph is not usually
shown to developers (cf. gprof paper)

● It seems intuitive that this context would help
● ‘More context = better code comprehension’ ???

24

Let’s Investigate
Context and Comprehension

● To make this tractable, let’s focus on one software
maintenance task: code summarization
● HW6 Figuring out what is going on in the project→

● Does exploring calling contexts really help
developer summarize code?

● Many would assume “yes”. Developers …
● Might navigate between callers and callees to

gather details (?)
● Might gain info from reading nearby methods (?)

● Lets find out …

25

Study Overview
● Question: How do developers use caller/callee

context during code summarization, and does
exploring this context help or hurt the
resulting code summary?

● Developers (n=22) wrote code summaries for
methods in a Java project via the Eclipse IDE
● Developers saw source code (not nodes/edges)

● Eye-tracking recorded their behavior

[McLoughlin et al., "Programmers’ Visual Attention on Function
Call Graphs During Code Summarization", ASE 2025]

26

Main Finding: Call-Graph Coverage
Leads to lower quality summaries

● The more methods they looked at that were
callers/callees → worse summary quality
● Effect was stronger for callee than caller

● Perhaps deep callee exploration can break
abstraction and modularity [Design for
Maintainability Lecture]

● Looking at more caller/callee functions was
also associated with decreased self confidence
in summary quality

27

Implications

● Developers don’t benefit from exploring large
amounts of caller/callee context when it
comes to comprehension
● Developers perform worse when having to consider

large contexts.

● Example Developer/Team Lead consideration:
● How much context and information does a new

developer you are onboarding actually need?

28

Making Informed Process Decisions

● Today, we have discussed three challenges:
● We assumed code complexity reflects difficulty

 but complexity metrics don’t→
● We assume self-reporting helps

 but it doesn't for → future predictions
● We assumed more context helps comprehension

 but caller/callee context doesn’t→

29

● Today, we have discussed three challenges:
● We assumed code complexity reflects difficulty?
● We assume self-reporting helps?
● We assumed more context helps comprehension?

● Informally, the problem is that a lot of these
ideas/metrics are like the “Blanks lines help
readability” claim
● Blank lines do correlate with readability in current

code, but adding many blank lines doesn’t cause
something to be more readable in the future

Making Informed Process Decisions

30

● Blank lines do correlate with readability in current
code, but adding many blank lines doesn’t cause
something to be more readable in the future

● To tease apart correlation and causation, we use a
controlled experiment and manipulate the presence
or absence of a relevant feature
● e.g., add or remove blank lines from code

● Much of our most useful information comes from
cognitive measurements (e.g., eye tracking, fMRI)

● How do we add or remove “brain activity” (like
working memory) from a human?

Making Informed Process Decisions

31

Trivia: Medieval History

• This Greek-speaking descendant of
the Roman Empire centered around
Istanbul (was Constantinople) and
conquered much of the
Mediterranean coast. Greek fire,
mosaics, orthodox Christianity, the
crusades, and the Hagia Sophia are all
associated with this empire.

32

Trivia: Cuisine

● This salty, crumbly cheese is from the
highlands of Michoacán, Mexico. Made from
cow’s milk and aged to develop a sharp flavor,
it softens with heat but does not melt. It is
typically grated or crumbled over dishes such
as elotes, tacos, soups, and salads, and is
widely used across Mexico.

33

Trivia: Games

● This cheerful, dinosaur-like companion
first appeared in a classic platforming
game and is known for funny jumps,
swallowing foes, and producing useful
eggs. It appears across many adventure
and racing titles in the franchise.

34

Trivia: Fashion
● These types pants were first used as military

trousers from the middle of the 19th century
onward. These trousers are made from “twill”,
a classic cotton fabric that is described as
being naturally light.

35

Experimenting on Software
Cognition

● Many SE theories assume certain cognitive processes
(e.g., working memory, language) affect how
developers understand code

● But most prior studies only observe the brain,
not manipulate it

● To know whether a cognitive factor causes
performance changes, we need a way to manipulate
that cognitive factor

● If we could do so, it would allow us to ask:
● “If we nudge this brain system, does the developer

perform differently?”

36

Enter: Transcranial Magnetic
Stimulation

● Transcranial Magnetic stimulation is a
noninvasive method that uses brief magnetic
pulses on the scalp to temporarily increase or
decrease activity in a specific brain region

● It lets us manipulate cognitive regions (e.g.,
working memory), then measure whether
performance changes.

● [Ahmad, et al., "Causal Relationships and
Programming Outcomes: A Transcranial
Magnetic Stimulation Experiment", ICSE
2024]

37

Introducing TMS Part 2
● TMS is a safe technique that is used in medical

contexts
● For example, Mayo Clinic depression→

● TMS has also been used to investigate causality in
other fields:
● Math: TMS resulted in 30% accuracy increase in

memorization and addition of numbers [1]
● Language: TMS resulted in faster verb processing

speed for manual actions [2]
● Effect of TMS is temporary (45-60 min)

[1] J. Gill et al. It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive
function. 2015. [2] R. M. Willems et al. A functional role for the motor system in language understanding: Evidence from theta-burst
transcranial magnetic stimulation. 2011.

38

What are we going to study?
(SE Data Structure Problem)

39

What are we going to study?
(SE Code Comprehension Problem)

40

Setup TMS Experiment for SE
● Programmers (n=16) received 3 different sessions

of TMS on three different days
● Record outcomes like timing (time taken)

41

Finding #1: ???
● Prior work found a correlation between mental

rotation (spatial reasoning) and data structure
manipulation.

● Should SE managers train spatial reasoning to
help devs with data structures?

42

Finding #1: Causal Relationships
● Prior work found a correlation between mental

rotation (spatial reasoning) and data structure
manipulation.

● We found no significant direct causal relationship
between spatial reasoning and DS outcomes

43

Finding #2: ???
● Researchers had found a correlation between

language and code comprehension [Code
Inspection and the Brain Lecture]

● Should SE managers consider cognitive trainings
to help devs with code comprehension?

44

Finding #2: Causal Relationships
● Researchers had found a correlation between

language and code comprehension [Code
Inspection and the Brain Lecture]

● Potentially Yes!
● (Let's dive in …)

45

Finding #2: Causal Relationships
● TMS can affect programming tasks

● Which factors matter more for time taken by software
developers (task completion time)?

● We found that the ‘participant by brain region
stimulated’ factor significantly accounted for 2.2% of the
variance in the response time when controlling for other
plausible effects.

46

Is This a Big Effect?
● A recurring theme in class is deciding between

two process decisions
● If pair programming reduced the defect rate by X%

but increases coding time by Y% amount of time ...
● If design for maintainability increases coding time by

A% but decreases maintenance time by B% …
● These percentages don’t have to be big for us to

want to implement such decisions
● e.g., modest pair programming benefits can add up if

debugging is more expensive than code writing
● Is 2.2% coding time decrease via TMS a lot?

47

Takeaway: It Depends!
● 2.2% variance is a small, indirect effect …
● But for the future, TMS:

● Can be done alongside other approaches
● Doesn’t require shared language
● Only takes five minutes

● 481: We show you this because we suspect
cognitive interventions will be increasingly
deployed in the next decade or two (cf. AI now)
● You'll be more senior. How will you decide?

48

Real World Use of SE + Cognition
● Suppose you are manager, and you are going to

assign your developers an extra hour of training
each week for 11 weeks: what do you do?
● Do you have them train spatial ability (shown to

correlate with SE tasks but no causal relationship was
found)?

or
● Do you have them train language ability (shown to

correlate with SE tasks AND a causal relationship was
found)?

49

Real World Interpretation?
● Let’s try it!
● UM EECS 183 Students (n=57) were randomly

divided into two training groups (spatial training
vs language training)
● Attended one hour training sessions each week for 11

weeks, while taking EECS183 as normal
● At the end the semester, they were given a “final

exam”
● Even when controlling for differences in incoming

preparation (e.g., CS knowledge) ...

How did the two groups do?

50

Real World Use of SE + Cognition
● Suppose you are manager, and you are going to

assign your developers an extra hour of training
each week for 11 weeks: what do you do?

● [Endres, et al., "To Read or To Rotate? Comparing the Effects of Technical Reading
Training and Spatial Skills Training on Novice Programming Ability", FSE 2021]

51

Overall Conclusion
● As a software engineer lead or manager, you will

have to make critical decisions about humans
● Classic question: Should I invest more in testing?
● Current modern question: Should I invest more in AI tools?
● Future question(?): Should I invest more in cognitive enhancements?

● These feel different on the surface, but they are
all the same sort of question, so use the same
tools/reasoning you've learned in 481

● Avoid cognitive biases (streetlight effect and McCabe)
● Use valid measurements (self-reporting and COCOMO)
● Avoid mistaking correlation and causation

52

Questions?

● Focus on HW6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

