WHAT TECH PEOPLE THINK WHAT SCENTISTS
SCIENTISTS NEED HELP WITH: ACTUALLY NEED:

PLEASE—OUR DATA, IT'S ToO FOR A FEW WEEKS IN JUNE, THE
COMPLEX! CAN YOUR MAGICAL | | LAB WAS INFESTED BY WASPS, S50
MACHINE MINDS UNEARTH THE WE HAD To TAKE PICTURES OF THE

®
Deb uggl ng PATTERNS THAT LIE WTHIN? | | EQUIPMENT THROUGH THE LINDOL
1

WE SHALL MARSHAL HOW DO YOU GET GRAPHS FROM

M. d OUR FINEST ALGORITHMS! | | A POLAROID)HOTO INTO EXCEL?

s

OUR FMRI STUDY FOUND THAT

SUBJECTS PERFORMING SIMPLE.

MEMORY TASKS SHOWED ACTIVITY

IN THE PARTS OF THE BRAIN

ASSOCIATED m Lﬁ‘”mé %oEass's, T DONT UNDERSTAND || BUT MYBRAN 1S ISTHAT A PROBLEM?

CLAUSTROPHOBIA, MY BRAIN WJORKS.

REMOVAL OF JEVEELRY. HOW My BRA mt RE{:IN%N TM NOT SURE
/ HOW THINGS WORK. HoU TOTE“'

The Story So Far ...

* We want to deliver and support a quality
software product

* Software processes are carried out by
humans

* We can measure brain activity

* Productivity and expertise involve different
levels of brain activity

* Today: What neural activities are associated
with SE and how can their measurements guide
process decisions?

2

One-Slide Summary

Software measurement can be misleading for
process decisions involving humans.

Many complexity metrics do not correlate with
neural activity. Metrics based on data dependency
do correlate with cognitive load.

Context is seen as a positive factor for code
comprehension, but more context hurts quality.

We can control neural activity to probe causality
and learn which measurements are valid. Cognitive
enhancements (based on valid measurements) can
impact software engineering outcomes.

Setting the Stage

* In this class, you’ve practiced and considered
decisions for improving SE outcomes:

W2: Whic
W4: Whic
W5: Is de

n test generator tool ... ?
n static analysis tool ... ?

ta debugging good for task X ... ?

* We want more practice making critical decisions

* How do we pick the good thing and not the fad

* Especially when human cognition is involved!

* We will begin with code comprehension

What we already know

* Lines of Code, McCabe's Cyclomatic Complexity,
and Halstead Volume are software metrics

* They may help estimate software development,
comprehension or testing costs (?)

* These metrics often have validity problems
* We end up measuring what’s easy, not what matters

* Metrics can be misinterpreted or encourage
wrong behaviors EHEC{CLONATC CONPLENYEOR

Complexity Metrics in Practice

* Microsoft Visual Studio uses Cyclomatic
Complexity + Maintainability Index to flag “risk
and maintainability issues”

* NASA (SWE-220) requires Cyclomatic
Complexity <= 15 for safety critical modules

* Google developers cite complexity (LOC,
branches, etc.) as a trigger for refactoring

* What is the underlying assumption here?

* Higher Complexity Score =? Harder for Humans to
understand and thus to maintain

What Metrics Measure

(Do Metrics Actually Measure How Hard it is to Read Code?)

* Studies suggest developers use strategies like
Top-down or Bottom-up comprehension to
understand code

* We may use beacons and rely on our
experience to ease code understanding

* Core question: do structural metrics like
McCabe actually reflect the mental effort
required for human comprehension?

e Let’s see!

Study Overview

* Developers (n=19) read short code snippets,
answered comprehension questions, and rated
how difficult it was.

* Record cognitive effort (fMRI), response times,
accuracy and subjective judgments of difficulty

* The 16 Java code snippets varied in

* LOC, Vocabulary size (Halstead), Control flow (McCabe),
Data-flow dependencies (DepDegree ‘NEW’)

[Siegmund et al., "Measuring Neural Efficiency of Program Comprehension”,

ESEC/FSE 2017]
8

Finding #1: Code Size and
Vocabulary Impact Cognitive Load

TABLE II: Kendall’s 7 and the explained variance (r2, in brackets) of the dependent variables. A darker cell shading indicates
a stronger correlation: none (7 < 0.1), small (0.1 <7 < 0.3), medium (0.3 < 7 < 0.5), and [strong| (0.5 < 7) [49].

Complexity Metrics

LOC Halstead DepDegree
“Cognitive LOC With t
load” Complexity Halstead 32 Vbha¥opu;tt§?nr2’
Metrics 57 25 do you spot?
DepDegree .59 50 49 |
BA 6 26 (.05) .38 (.(20) .04 (.00) .32 (.11)
.. BA 21 43 (39) .32(27) .09 (.04) 41 (.24)
Activation g, 39 17 (10) 40 (18) .07 (O1) .36 (21)
BA 44/45 15 (.04) .17 (.06) —.04 (.00) .22 (.09)
SE . .. BA 31 —.30 (.21) —.30 (.11) .05 (.00) —.24 (.04)
Deactivation ga 35 39 (24) —42 (22) .04 (00) —.29 (.04)
\ Behavioral Correctness —.46 (.29) —.45 (.26) —.09 (.02) —.41 (.22)
Data Time 22 (10) .24 (.09) .06 (.00) .26 (.07)

Finding #1: Code Size and
Vocabulary Impact Cognitive Load

e LOC — BA 21 activation: t = .32
* Halstead = BA6/21/39: t=.32-.40
 LOC & Halstead @ DMN deactivation: T = -.30

* Meaning, longer or symbol-heavy code
increases semantic processing and working
memory demand

* Size matters because it affects mental

workload, not because it contains more logic.

[Siegmund et al., "Measuring Neural Efficiency of Program Comprehension”,
ESEC/FSE 2017]

10

Explaining DepDegree

* DepDegree is a simple indicator of complex
dependencies. The more dependencies a program
operation has, the more different program states
have to be considered “by the human” and the more
difficult “for the human” it is to understand the

operation.

int a, b; int a, b;
With your team,
which ones of these void swap () { void swap () {
has a bug ? a+=b: int temp = a;
Which is harder to o =d t')_b; g _ t; .
understand? y a-=0n } = emp;

11

Explaining DepDegree

* DepDegree is a simple indicator of complex
dependencies. The more dependencies a program
operation has, the more different program states
have to be considered “by the human” and the more
difficult “for the human” it is to understand the

operation.
What scores would these int a, b; int a, b;
methods get in other metrics? . .
void swap () { void swap () {
- a +=Db; int temp = a;
e b =a-b; a =b; LOC =3
cLabe = a-=>0b; b = temp; McCabe = 1
} }

12

Explain ‘DepDegree’

int a, b;

void swap () {
a += Db;
b=a-b;
a-=0>b;

=T

‘ b=a-b;

int a, b;

void swap () {

int temp = a;

a=Db;
b = temp;
}

G (T

13

Explain ‘DepDegree’

int a, b; int a, b;
void swap () { void swap () {
a +=Db; int temp = a;
b=a-b; a=>b;
a-=0>b; b = temp;
Which data flow } }

analysis computes
this information

about the variable @@ @ @

being used later?
D> G

14

Explain DepDegree

int a, b; int a, b;
void swap () { void swap () {
a+=b; int temp = a;
b=a-b; a = b;
a-=>b: b = temp;
LOC =3 } } LOC =3
McCabe = 1 McCabe = 1
DepDegree = 6 DepDegree = 3

< (=)

15

Finding #2: Data flow complexity
makes comprehension hard

X [2.0] 2.0 ®

= o H il ®

c @© - ® .. _ -

o9 @

5 2015 15 %

E o0

0 Kendall t: -0.09 . Kendall t: 0.22

< | rsquared: 0.01 10 | r squared: 0.08
4 6 8 ' 20 40 60

DepDegree

* Working memory and semantic processing have
a medium-strong correlation with DepDegree

(vs. no correlation with McCabe ...

* Interpretation: tracking state and variable
dependencies is hard for humans!

16

Prior Lecture

* [Code Inspection and The Brain Lecture]

* Do you think it would take you longer to
maintain code if it looked like this?

Listing 2: Code snippet with no beacons and disrupted lay-

out (BN, LD)

1 public float ayyaoAwyyaky (int[] array) {
2 int

3 mggakyy

4 = 0;

5 int sum = 0;

6

7 while (mggakyy

8 < array.length) {
9 sum =

10 sum + array[mggakyy];
11 mggakyy

12 = mggakyy + 1;

13 }

14

15 float average

16 = sum /

17 (float) mggakyy;
18 return

19 average;

20 }

| HAVE A BRAD,MEMORY

.
a Y

BUT AT LEAST I DON'T
HAVE A BAD MEMORY

17

Prior Lecture

* [Code Inspection and The Brain Lecture]

* Do you think it would take you longer to
maintain code if it looked like this?

* Perhaps counter-intuitively: no!

Listing 2: Code snippet with no beacons and disrupted lay-

out (BN, LD)

1 public float ayyaoBAwyyaky (int[] array) { g 35

2 int 2

3 mggakyy @

4 = 05 £ 25

5 int sum = 0; =

6 @ 20

7 while (mggakyy 5 |

8 < array.length) { a 15

9 sum = % ol

10 sum + array[mggakyy]l; c 10

11 mggak - I ‘ i |
12 =g§1gqgiyy + 1; > Beacons, Beacons, Nnbela ccccc Nobe;cons, Bottom-up Syntax
13 } layout pretty layout disrupted layout pretty layout disrupted

14 Experimental Condition

15 float average

16 = sum /

17 (float) mggakyy; Figure 4: Response times in seconds per condition.
18 return

19 average;

20 }

18

When can we trust self-reporting?

(What do we know so far?)

How-good-you-are-at something {self-reported-efficacy) [Productivity

Lecture] (Humans aren’t good at judging self-expertise)

[Design for Maintainability Lecture] (normative vs. descriptive metrics)

How-leng-willittake-me-to-comprehend-code [Code Inspection and the

Brain Lecture]

How hard is it to comprehend code (brain activity) [Code Inspection
and the Brain Lecture]

This paper also finds developers’ own feelings of
difficulty to correlate strongly with actual performance

* Subjective rating — correctness: t = -.77 (strong)

* Subjective rating — cognitive load: T = -.69 i

Finding #3: Subjective complexity
predicts performance

* Developers’ own feelings of difficulty correlated
strongly with actual performance.

* We don’t have evidence that developers know how
hard something will be in the future, but they can
more confidently say how hard something is currently

* Takeaways for future devs and team leads:

* Self-reporting about future scheduling may be less
reliable (unlike COCOMO, which can predict costs).
Self-reporting for current difficulties is OK.

* Use the right information source when making
process decisions involving humans

20

Example Industry Use: SonarQube

USER GUIDE > MONITORING CODE METRICS <$> Ask | v

Understanding measures and metrics

Measures and metrics used in SonarQube to evaluate your code.

Metrics are used to measure:

e Security, maintainability, and reliability attributes on the basis of statistics on the detected
security, maintainability, and reliability issues, respectively.

¢ Test coverage on the basis of coverage statistics on executable lines and evaluated conditions.

* Code cyclomatic and cognitive complexities.

e Security review level on the basis of statistics on reviewed security hotspots.

Complexity

Complexity metrics used in the Sonar solution.

Metric Metric key Definition

Cyclomatic . A quantitative metric used to calculate the number of
. complexity

complexity paths through the code.

A qualification of how hard it is to understand the code's
control flow. See the Cognitive Complexity white paper 7
for a complete description of the mathematical model
applied to compute this measure.

Cognitive complexity cognitive_complexity

21

Next Paper ...

Programmers’ Visual Attention on Function Call
Graphs During Code Summarization

Samantha McLoughlin*, Zachary Karas*, Robert Wallace, Aakash Bansal?, Collin McMillan', Yu Huang*,
*Vanderbilt University: {samantha.m.mcloughlin, z.karas, yu.huang} @ vanderbilt.edu
TUniversity of Notre Dame {rwallacl, cmc} @nd.edu
Louisiana State University abansal @lsu.edu

22

Going Beyond Beacons

* Code features like beacons (semantic cues,
method names) impact code comprehension

* But developers might also want to know:

* What calls this method? (caller context)
* What does this method call? (callee context)

* Static and dynamic analysis represent these as a
Call Graph, but an explicit graph is not usually
shown to developers (cf. gprof paper)

* |t seems intuitive that this context would help

* ‘More context = better code comprehension’ ???
23

Let’s Investigate
Context and Comprehension

 To make this tractable, let’s focus on one software
maintenance task: code summarization

* HW6 — Figuring out what is going on in the project

* Does exploring calling contexts really help
developer summarize code?

* Many would assume “yes”. Developers ...

* Might navigate between callers and callees to
gather details (?)

* Might gain info from reading nearby methods (?)
* Lets find out ...

24

Study Overview

* Question: How do developers use caller/callee
context during code summarization, and does
exploring this context help or hurt the
resulting code summary?

* Developers (n=22) wrote code summaries for
methods in a Java project via the Eclipse IDE

* Developers saw source code (not nodes/edges)
* Eye-tracking recorded their behavior

[McLoughlin et al., "Programmers’ Visual Attention on Function
Call Graphs During Code Summarization”, ASE 2025] 25

Main Finding: Call-Graph Coverage
Leads to lower quality summaries

* The more methods they looked at that were
callers/callees = worse summary quality

» Effect was stronger for callee than caller

* Perhaps deep callee exploration can break
abstraction and modularity [Design for
Maintainability Lecture]

* Looking at more caller/callee functions was
also associated with decreased self confidence
in summary quality

26

Implications

* Developers don’t benefit from exploring large
amounts of caller/callee context when it

comes to comprehension

* Developers perform worse when having to consider
large contexts.

* Example Developer/Team Lead consideration:

e How much context and information does a new
developer you are onboarding actually need?

27

Making Informed Process Decisions

* Today, we have discussed three challenges:

* We assumed code complexity reflects difficulty

— but complexity metrics don’t
* We assume self-reporting helps

— but it doesn't for future predictions
* We assumed more context helps comprehension

— but caller/callee context doesn’t

28

Making Informed Process Decisions

* Today, we have discussed three challenges:

* We assumed code complexity reflects difficulty?
* We assume self-reporting helps?
* We assumed more context helps comprehension?

* Informally, the problem is that a lot of these
ideas/metrics are like the “Blanks lines help
readability” claim

* Blank lines do correlate with readability in current
code, but adding many blank lines doesn’t cause
something to be more readable in the future

29

Making Informed Process Decisions

* Blank lines do correlate with readability in current
code, but adding many blank lines doesn’t cause
something to be more readable in the future

* To tease apart correlation and causation, we use a
controlled experiment and manipulate the presence
or absence of a relevant feature

* e.g., add or remove blank lines from code

* Much of our most useful information comes from
cognitive measurements (e.g., eye tracking, fMRI)

* How do we add or remove “brain activity” (like
working memory) from a human?

Trivia: Medieval History

e This Greek-speaking descendant of
the Roman Empire centered around
Istanbul (was Constantinople) and
conquered much of the
Mediterranean coast. Greek fire,
mosaics, orthodox Christianity, the
crusades, and the Hagia Sophia are all
associated with this empire.

31

Trivia: Cuisine

* This salty, crumbly cheese is from the
highlands of Michoacan, Mexico. Made from
cow’s milk and aged to develop a sharp flavor,
it softens with heat but does not melt. It is

typically grated or crumbled over dishes such
as elotes, tacos, soups, and salads, and is
widely used across Mexico. s

Trivia: Games

* This cheerful, dinosaur-like companion
first appeared in a classic platforming
game and is known for funny jumps,
swallowing foes, and producing useful

eggs. It appears across many adventure
and racing titles in the franchise. ('

Trivia: Fashion

* These types pants were first used as military
trousers from the middle of the 19t century
onward. These trousers are made from “twill”,
a classic cotton fabric that is described as
being naturally light.

Experimenting on Software
Cognition

Many SE theories assume certain cognitive processes
(e.g., working memory, language) affect how
developers understand code

But most prior studies only observe the brain,
not manipulate it

To know whether a cognitive factor causes
performance changes, we need a way to manipulate
that cognitive factor

If we could do so, it would allow us to ask:

* “If we nudge this brain system, does the developer

perform differently?”

35

 [Ahmad, et al., "Causal Relationships and

Enter: Transcranial Magnetic

Stimulation

* Transcranial Magnetic stimulation is a
noninvasive method that uses brief magnetic
pulses on the scalp to temporarily increase or
decrease activity in a specific brain region

* |t lets us manipulate cognitive regions (e.g.,
working memory), then measure whether
performance changes.

Programming Outcomes: A Transcranial
Magnetic Stimulation Experiment”, ICSE
2024]

36

Introducing TMS Part 2

* TMS is a safe technique that is used in medical
contexts

* For example, Mayo Clinic — depression

* TMS has also been used to investigate causality in
other fields:

* Math: TMS resulted in 30% accuracy increase in
memorization and addition of numbers [1]

* Language: TMS resulted in faster verb processing
speed for manual actions [2]

* Effect of TMS is temporary (45-60 min)

[1] J. Gill et al. It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive

function. 2015. [2] R. M. Willems et al. A functional role for the motor system in language understanding: Evidence from theta-burst 37
transcranial magnetic stimulation. 2011.

What are we going to study?
(SE Data Structure Problem)

Consider the AVL tree below. After inserting 14 into the tree (and
performing rotations to keep the tree balanced as necessary), which of the
following will be produced by a pre-order traversal of the resulting tree?

A:10,5,3,1,8,7,12,11, 14, 13, 16
B:10,5,3,1,8,7,12,11, 16, 13, 14

38

What are we going to study?

(SE Code Comprehension Problem)

What is true about the following code for reversing a vector?
Assume that n = v.size().

vector<int> v{1, 2, 3, 4};
stack<int> s;

for (size_t 1 =0; 1 < v.size(); ++1)
s.push(v[i]);

for (size .t i = 0; i < v.size(); ++i) {
viil = s.top();
s.pop();

Y /7 for ..

A: The memory complexity is O(1).
B: The memory complexity is O(n).

39

Setup TMS Experiment for SE

* Programmers (n=16) received 3 different sessions
of TMS on three different days

* Record outcomes like timing (time taken)

MRI scan +
“thresholding” /

—

30 minutes of 61
random stimuli

[a¥aY¥a
|

[.\\ (I’-—. - —
\ S.T) .i — -—l/> — ':—:y

40 séconds of

TMS on Likert
randomized questionnaire
condition

(SMA/M1/control)

40

Finding #1: 2?7

* Prior work found a correlation between mental
rotation (spatial reasoning) and data structure
manipulation.

ry {2
ofjdﬁ =

* fMRI and fNIRS show that mental rotation and
data structure tasks use the same parts of the
brain (e.g., 95% voxel similarity, p < 0.01)

* Should SE managers train spatial reasoning to
help devs with data structures?

41

Finding #1: Causal Relationships

* Prior work found a correlation between mental
rotation (spatial reasoning) and data structure
manipulation.

ry {2
ofjdﬁ =

ot

* fMRI and fNIRS show that mental rotation and
data structure tasks use the same parts of the
brain (e.g., 95% voxel similarity, p < 0.01)

* We found no significant direct causal relationship
between spatial reasoning and DS outcomes

42

Finding #2: 2?7

* Researchers had found a correlation between
language and code comprehension [Code
Inspection and the Brain Lecture]

(a) Code Comprehension vs. Prose Review (b) Code Review vs. Prose Review

* Should SE managers consider cognitive trainings
to help devs with code comprehension?

43

Finding #2: Causal Relationships

* Researchers had found a correlation between
language and code comprehension [Code
Inspection and the Brain Lecture]

(a) Code Comprehension vs. Prose Review (b) Code Review vs. Prose Review

* Potentially Yes!
* (Let's dive in ...)

44

Finding #2: Causal Relationships

* TMS can affect programming tasks

* Which factors matter more for time taken by software
developers (task completion time)?

Factor Effect Size (Normalized)
“How hard is the question?” 1.00
“Participant expertise” 0.18
“TMS” 0.05

* We found that the ‘participant by brain region
stimulated’ factor significantly accounted for 2.2% of the
variance in the response time when controlling for other

plausible effects. .

Is This a Big Effect?

* Arecurring theme in class is deciding between
two process decisions

Is two a lot?

* |f pair programming reduced the defect rate by X%
out increases coding time by Y% amount of time ...

* |f design for maintainability increases coding time by
A% but decreases maintenance time by B% ...

* These percentages don’t have to be big for us to
want to implement such decisions

* e.g., modest pair programming benefits can add up if
debugging is more expensive than code writing

* Is 2.2% coding time decrease via TMS a lot?

46

Takeaway: It Depends!

e 2.2% variance is a small, indirect effect ...
 But for the future, TMS:
* Can be done alongside other approaches
* Doesn’t require shared language
* Only takes five minutes

* 481: We show you this because we suspect
cognitive interventions will be increasingly
deployed in the next decade or two (cf. Al how)

* You'll be more senior. How will you decide?

47

Real World Use of SE + Cognition

* Suppose you are manager, and you are going to
assign your developers an extra hour of training
each week for 11 weeks: what do you do?

* Do you have them train spatial ability (shown to
correlate with SE tasks but no causal relationship was

found)?

or

* Do you have them train language ability (shown to
correlate with SE tasks AND a causal relatlonshlp was
f Ound) ogram s fun and engaging’

BES

48

Real World Interpretation?

* Let’s try it!

UM EECS 183 Students (n=57) were randomly
divided into two training groups (spatial training
vs language training)

* Attended one hour training sessions each week for 11
weeks, while taking EEC5183 as normal

* At the end the semester, they were given a “final
exam”

* Even when controlling for differences in incoming
preparation (e.g., CS knowledge) ...

How did the two groups do? N

Real World Use of SE + Cognition

* Suppose you are manager, and you are going to
assign your developers an extra hour of training
each week for 11 weeks: what do you do?

and spatial ability correlate with programming success. Signifi-
cantly, however, we find that those in our reading training exhibit
larger programming ability gains than those in the standard spatial
fraining (p = 0.02, /2 = 0.10). We also find that reading trained

participants perform particularly well on programming problems
that require tracing through code (p = 0.03, f% = 0.10). Our re-
sults suggest that technical reading training could be beneficial
for novice programmers. Finally, we discuss the implications of

* [Endres, et al., "To Read or To Rotate? Comparing the Effects of Technical Reading

Training and Spatial Skills Training on Novice Programming Ability”, FSE 2021] 50

When the meme is so overused
that you end up evolving:

Overall Conclusion

* As a software engineer lead or manager, you will
have to make critical decisions about humans
* (lassic question: Should | invest more in testing?
e Current modern question: Should | invest more in Al tools?

* Future question(?): Should | invest more in cognitive enhancements?

* These feel different on the surface, but they are
all the same sort of question, so use the same
tools/reasoning you've learned in 481

* Avoid cognitive biases (streetlight effect and McCabe)
* Use valid measurements (self-reporting and COCOMO)

* Avoid mistaking correlation and causation
51

* Focus on HW6

Questions?

Exercise
for Others

Exercise
for Coders

116 Calories

52

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

