Automated Program Repair

GenProg

Evolutionary Program Repair

e—

Project Overview @ Videos

A Systematic Study of Automated Program Repair:
Fixing 55 out of 105 bugs for $8 Each

Defects  Cost per Non-Repair  Cost Per Repair

Program Repaired  Hours US$  Hours USS LOC Tests  Defects
fbc Lf3 8.52 5.56 6.52 4.08 97.000 173 3
gmp Y ) 9.93 6.61 1.60 0.44 145,000 146 2
gzip A 5.11 304 1.41 0.30 491.000 12 5
1libtiff 17 /24 7.81 5.04 1.05 0.04 77.000 78 24
lighttpd 579 10.79 7.25 1.34 0.25 62,000 295 9
php 28/ 44 13.00 8.80 1.84 0.62  1.046000 8471 44
python 1711 13.00 8.80 1.22 0.16 407.000 355 11
wireshark LT 13.00 8.80 1.23 0.17 2814000 63 7
total 55/105 11.22h 1.60h 5,139,000 10,193 105




LEPC 101

M

tE

VL %_,M,ﬁ M
A FEIC 107

ML FFPS 281

ma rree 101

M EECS 481

M Em@w v
™ML .
VL EECS 481




Apr14 Automatic Program Repair

Mon [overview]

Program Synthesis (Part 1)

[overview]

Program Synthesis (Part 2)

[overview]

(you pick a 2-hour window within this
24-hour day)

HW 6b (Contribution) Due

(cannot be accepted later than this
please plan accordingly)

Marginean et al.'s SapFix: Automated End-to-End Repair at Scale

Monperrus et al.'s Repairnator patches programs automatically

Optional: "Can smaller companies use automated repair?" Find out in:

Haraldsson et al.'s Fixing Bugs in Your Sleep: How Genetic Improvement Became an

Overnight Success

Optional: "How does mutation relate to automated repair?" Find out in: Le
Goues et al's A Systematic Study of Automated Program Repair: Fixing 55 out of
105 Bugs for $8 Each

Optional: "How can we repair 50% of standard compilation errors with neural

machine translation?" Find out in: Mesbah et al.s DeepDelta: Learning to Repair

Compilation Errors

Interview with Sumit Gulwani
Sections 1 and 2 of Alur et al.'s Syntax-Guided Synthesis
Chapter 1 of Gulwani's Program Synthesis

Optional: Dong et al.'s WebRobot: Web Robotic Process Automation
using Interactive Programming-by-Demonstration (all Sections except
Section 8)

Optional: Pu et al''s SemanticOn: Specifying Content-Based Semantic
Conditions for Web Automation Programs (Sections 1, 4 and 5)
Optional: SemanticOn Demonstration Video




The Never-Ending Story

*Today we will use recent advances in automated program
repair to touch on all of the lecture topics from this course




Leading Question

*How do software companies find/fix bugs?



Speculative Fiction

*\What if large, trusted companies paid strangers online to
find and fix their normal and critical bugs?

ONLINE SHOPPING

webcomicname.com



oSearcn MICIroSor.cc

4

WHAT WE DO REPORT A VULNERABILITY COMMUNITY COLLAB(

Microsoft Security Bounty Programs : : Featured Vide

Zotep gL

Microsoft is now offering direct cash payments in exchange for reporting certain tD
vulnerabilities and exploitation techniques.

In 2002, we pioneered the Trustworthy Computing initiative to emphasize our commitment to
doing what we believe best helps improve our customers’ computing experience. In the years
since, we introduced the Security Development Lifecycle (SDL) process to build more secure
technologies. We also championed Coordinated Vulnerability Disclosure (CVD), formed industry
collaboration programs such as MAPP and MSVR, and created the BlueHat Prize to encourage
research into defensive technologies. Our new bounty programs add fresh depth and flexibility
to our existing community outreach programs. Having these bounty programs provides a way

Trustworthy Compul
Jonathan Ness, and |
introduce new boun'

to harness the collective intelligence and capabilities of security researchers to help further resaarchers.
protect customers.
The following programs will launch on June 26, 2013:

1. Mitigation Bypass Bounty. Microsoft will pay up to $100,000 USD for truly novel About the pro

exploitation techniques against protections built into the latest version of our operating
system (Windows 8.1 Preview). Learning about new exploitation techniques earlier helps
Microsoft improve security by leaps, instead of capturing one vulnerability at a time as a
traditional bug bounty alone would. TIMEFRAME: ONGOING

Mitigation Bypass B
for Defense Guidelir

Internet Explorer 11

2. BlueHat Bonus for Defense. Additionally, Microsoft will pay up to $50,000 USD for Guidelines
defensive ideas that accompany a qualifying Mitigation Bypass submission. Doing so
highlights our continued support of defensive technologies and provides a way for the Bounty Programs F/
research community to help protect more than a billion computer systems worldwide.
TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty). New Bounty Progra

information on bou



oealCll MICIOS0IL.CC

Personal Business i Sign Up

PayPal Buy ~ Sell ~ Transfer ~

For Security Researchers Bug Bounty Wall of Fame

For Customers: Reporting Suspicious Emails

Customers who think they have received a Phishing email, please learn more about phishing at https://cms.paypal.com/us/cgi-bin/marketingweb?cmd=_render-
content&content_ID=security/hot_security_topics, or forward it to: spoof@paypal.com

For Customers: Reporting All Other Concerns

Customers who have issues with their PayPal Account, please visit: https://www.paypal.com/cgi-bin/helpscr?cmd=_help&t=escalate Tab

For Professional Researchers: Bug Bounty Program

Our team of dedicated security professionals works vigilantly to help keep information secure. We recognize the important role that security researchers and our

user community play in also helping to keep PayPal and our customers (ecure. If you discover a site or product vulnerability please notify us using the guidelines below. >

Program Terms

Please note that your participation in the Bug Bounty Program is voluntary and subject to the terms and conditions set forth on this page (‘Program Terms”). By submitting
a site or product vulnerability to PayPal, Inc. (‘PayPal”) you acknowledge that you have read and agreed to these Program Terms.

These Program Terms supplement the terms of PayPal User Agreement, the PayPal Acceptable Use Policy, and any other agreement in which you have entered with
PayPal (collectively “PayPal Agreements”). The terms of those PayPal Agreements will apply to your use of, and participation in, the Bug Bounty Program as if fully set
forth herein. If there is any inconsistency exists between the terms of the PayPal Agreements and these Program Terms, these Program Terms will control, but only with
regard to the Bug Bounty Program.

You can jump to particular sections of these Program Terms by using the following links:
Responsible Disclosure Policy
Eligibility Requirements

Riuins Suthmiecinn Raniiira, nd Guidalinaa . - i el 8 NS — e




ipport > AT&T Bug Bounty Program > Intro

AT&T Bug Bounty Program

Intro Rewards Report Bug Hall of Fame PRINT EMAIL

Intro Already a Member?

Guidelines . or Join Now
Exclusions Sign In

Terms & Conditions

Welcome to the AT&T Bug Bounty Program! This program encourages and rewards contributions by developers and security researchers
who help make AT&T's online environment more secure. Through this program AT&T provides monetary rewards and/or public
recognition for security vulnerabilities responsibly disclosed to us.

explains the details of the program. To immediately start submitting your AT&T security bugs, please visit th
submittal page.

Guidelines

The AT&T Bug Bounty Program applies to security vulnerabilities found within AT&T's public-facing online environment. This includes,
but not limited to, websites, exposed APIs, and mobile applications.

A security bug is an error, flaw, mistake, failure, or fault in a computer program or system that impacts the security of a device,
system, network, or data. Any security bug may be considered for this program; however, it must be a new, previously unreported,
vulnerability in order to be eligible for reward or recognition. Typically the in-scope submissions will include high impact bugs; however,
any vulnerability at any severity might be rewarded.

Bugs which directly or indirectly affect the confidentiality or integrity of user data or privacy are prime candidates for reward. Any

security bug, however, may be considered for a reward. Some characteristics that are considered in "qualifying" bugs include those
3 LR



Microsoft Security Response Center

Personal

€lpport > AT&T Bug Bounty Program > Intro

PayPal | Bw -  sen - | Tanst
For Security Researchers AT&T Bug Bounty Program Jex

For Customers: Reporting Suspicious Emails Intro Rewards Report Bug Hall of Fame PRINT EMAIL

Customers who think they have received
content&content_ID=security/hot_secy

For Customers: Reporting All Other Cq dy a Membef’? i

Customers who have issues with their P Rai Se YO u r H a n d I f Tru e l e ‘

For Professional Researchers: Bug Bo 1pul

nd |

Our team of dedicated security professior] s

user community play in also helping to ke
elopers and security researchers

o | have used software produced by

Please note that your participation in the
ugs, please visit the Bug Bounty

a site or product vulnerability to PayPal, | °

e MICIOSOTE, PayPal, AT&T, Facebook, o
PayPal (collectively “PayPal Agreements] |
forth herein. If there is any inconsistenc

Mozilla, Google or Youtube.

You can jump to particular sections of the ) ) ‘11
the security of a device,
Responsible Disclosure Policy new, previously unreported,
de high impact bugs; however,
Eligibility Requirements any vulnerability at any severity might be rewarded. L
Runa Submiscion Reaniiremeants and Guidelines Bugs which directly or indirectly affect the confidentiality or integrity of user data or privacy are prime candidates for reward. Any g:::

security bug, however, may be considered for a reward. Some characteristics that are considered in "qualifying" bugs include those
that: 1



Bug Bounties

*|f you trust your triage and code review processes,
anyone can submit a candidate bug report or candidate
patch

*Bug Bounties combine defect reporting and triage with
pass-around code review

*Finding, fixing and ignoring bugs are all so expensive that
it is now (~2013+) economical to pay untrusted strangers
to submit candidate defect reports and patches

11



Bug Bounties and Large Companies

*“We get hundreds of reports every day. Many of
our best reports come from people whose English
isn't great — though this can be challenging, it's
something we work with just fine and we have

paid out over S1 million to hundreds of
reporters.”

— Matt Jones, Meta/Facebook Software Engineering

12



Bug Bounties and Small Companies

*Only 38% of the submissions were true positives (harmless,
minor or major): “Worth the money? Every penny.” - Colin
Percival, Tarsnap €Tarsnap

Online backups for the truly paranoid

For this reason, Tarsnap has a series of bug bounties. Similar to the bounties offered by Mozilla and Google, the Tarsnap bug bounties
provide an opportunity for people who find bugs to win cash. Unlike those bounties, the Tarsnap bug bounties aren't limited to security bugs.
Depending on the type of bug and when it is reported, different bounties will be awarded:

Bounty |Pre-release

value bounty value Typa ot bug

$1000 |$2000 A bug which allows someone intercepting Tarsnap traffic to decrypt Tarsnap users' data.

$500 $1000 A bug which allows the Tarsnap service to decrypt Tarsnap users' data.

$500 $1000 A bug which causes data corruption or loss.

$100 $200 A t_)ug which causes Tarsnap to crash (without corrupting data or losing any data other than an archive currently
being written).

$50 $100 Any other non-harmless bugs in Tarsnap.

$20 $40 Build breakage on a platform where a previous Tarsnap release worked.

$10 $20 "Harmless" bugs, e.g., cosmetic errors in Tarsnap output or mistakes in source code comments.

A patch which significantly improves the clarity of source code (e.g., by refactoring), source code comments (e.g.,
$5 $10 by rewording or adding text to clarify something), or documentation. (Merely pointing to something and saying "this
IS unclear” doesn't qualify; you must provide the improvement.)

Cosmetic errors in the Tarsnap source code or website, e g., typos in website text or source code comments. Style
errors in Tarsnap code qualify here, but usually not style errors in upstream code (e.g., libarchive).

$1 $2




LeetCode Example

® Report “missing test cases” ¢
on LeetCode

® Rewards don’t have to be
Cash!

Thank you for your time.

We've used your feedback to u

If you have any other questions or feedback, please don't hesitate to let us know!

We appreciate your support!

Your LeetCode username

xwangsd

Category of the bug

Question
Solution
Language

Missing Tes

Description of the bug

Missing test cases where EMAIL is NULL, for example, with the following database:

CREATE TABLE PERSON |
ID INTEGER primary key,
EMAIL VARCHAR(20)

):

INSERT INTO PERSON VALUES (-1 , NULL);

INSERT INTO PERSON VALUES (@ , NULL);

The outputs of

SELECT EMAIL FROM PERSON GROUP BY EMAIL HAVING COUNT(EMAIL) > 1;

and

SELECT EMAIL FROM PERSON GROUP BY EMAIL HAVING COUNT(%) > 1;

are different.

Code you used for Submit/Run operation

SELECT EMAIL FROM PERSON GROUP BY EMAIL HAVING COUNT(%) > 1

SELECT EMAIL FROM PERSON GROUP BY EMAIL HAVING COUNT(ID) > 1




A Modest Proposal

* Using techniques from this class

*\We can automatically find and fix defects
« Rather than, or in addition to, paying strangers

*Given a program ...
* Source code, binary code, etc.

*... and evidence of a bug ...
 Passing and failing tests, crashes, etc.

o ... fix that bug.
e Create a textual patch (pull request)

15



How could this possibly work?

* Many faults can be localized to a small area
* Even if your program is a million lines of code, fault localization can
narrow it to 10-100 lines
* Many defects can be fixed with small changes

 Mutation (test metrics) can generate candidate patches from simple
edits

* A search-based software engineering problem

*Can use regression testing (inputs and oracles, continuous
integration) to assess patch quality

[ Weimer et al. Automatically Finding Patches Using Genetic Programming. Best Paper Award. IFIP TC2 Manfred
Paul Award. SIGEVO “Humies” Gold Award. Ten-Year Impact Award. ]

16



COMPILE AND TEST
(EVALUATE FITNESS)

C
L&

OUTPUT

17

GenProg




Name

Subjects

Notes

AFix

ARC
ARMOR
AV (TS
AutoFix-E
CASC

ClearView
Coker Hafiz
Debroy Wong
Demsky et al.

FINCH
GenProg

Gopinath et al.

Jolt
Juzi
PACHIKA
PAR

SemFix

Sidiroglou et al.

2 Mloc

6 progs.

13 progs.

21 Kloc
1 Kloc
Firefox
15 Mloc
76 Kloc
3 progs.
13 tasks
5 Mloc

2 methods.

5 progs.
7 progs.
110 Kloc
480 Kloc
12 Kloc

17 progs.

Concurrency, guarantees
Concurrency, SBSE

Identifies workarounds
Concurrency, guarantees, Petri nets

Contracts, guarantees

Co-evolves tests and programs

Red Team quality evaluation
Integer bugs only, guarantees
Mutation, fault localization focus
Data struct consistency, Red Team
Evolves unrestricted bytecode
Human-competitive, SBSE

Heap specs, SAT

Escape infinite loops at run-time
Data struct consistency, models
Differences in behavior models
Human-based patches, quality study
Symex, constraints, synthesis

Buffer overflows




Scales
well

Name

Suhiects

Notes

AFix

ARC
ARMOR
AV (TS
AutoFix-E
CASC

ClearView
Coker Hafiz
Debroy Wong
Demsky et al.

FINCH
GenProg

Gopinath et al.

Jolt
Juzi
PACHIKA
PAR

SemFix

Sidiroglou et al.

2 Mloc

6 progs.
13 progs.
21 Kloc

1 Kloc
Firefox
15 Miloc
/9 nuucC

3 progs.
12 tacks

5 Mloc

Z meconods.

5 progs.
7 progs.
110 Kloc
480 Kloc
12 Kloc
17 progs.

Concurrency, guarantees
Concurrency, SBSE

Identifies workarounds
Concurrency, guarantees, Petri nets
Contracts, guarantees

Co-evolves tests and programs

Red Team quality evaluation
Integer bugs only, guarantees
Mutation, fault localization focus
Data struct consistency, Red Team
Evolves unrestricted bytecode
Human-competitive, SBSE

Heap specs, SAT

Escape infinite loops at run-time
Data struct consistency, models
Differences in behavior models
Human-based patches, quality study
Symex, constraints, synthesis

Buffer overflows




Can fix
bugs

Name

Subjects Tests

Notes

AFix

ARC

ARMOR

AV
AutoFix-E
CASC
ClearView
Coker Hafiz
Debroy Wong
Demsky et al.
FINCH
GenProg
Gopinath et al.
Jolt

Juzi

PACHIKA

PAR

SemFix

Sidiroglou et al.

2 Mloc -
6 progs. -
13 progs.

21 Kloc

1 Kloc

Firefox

15 Miloc

76 Kloc

3 progs.

13 tasks

5 Mloc

2 methods.

5 progs.

7 progs.

110 Kloc

480 Kloc

12 Kloc

17 progs.

Concurrency, guarantees
Concurrency, SBSE

Identifies workarounds
Concurrency, guarantees, Petri nets
Contracts, guarantees

Co-evolves tests and programs

Red Team quality evaluation
Integer bugs only, guarantees
Mutation, fault localization focus
Data struct consistency, Red Team
Evolves unrestricted bytecode
Human-competitive, SBSE

Heap specs, SAT

Escape infinite loops at run-time
Data struct consistency, models
Differences in behavior models
Human-based patches, quality study
Symex, constraints, synthesis

Buffer overflows




Name Subjects Tests Notes

Ca N AFix 2 Mloc - Concurrency guarantees

. ARC - - Concurrency, Sb>c
p rovi d = ARMOR 6 progs. - Identifies wor!
gU dld ntee AV 13 progs. Concv .ency, guarantees, Pe. ‘i nets
AutoFix-E 21 Kloc Contra ts, guarantees
CASC 1 Kloc Co-eunlues tesus anu programs
ClearView Firefox Red Team g ality evaluation
Coker Hafiz 15 Mloc Integer pugs onl . guarantees
Debroy Wong 76 Kloc Mutation, fault localizauoun farus
Demsky et al. 3 progs. Data struct consisten v, Red Team
FINCH 13 tasks Evnhin- -~~~ +virted bytecoue
GenProg 5 Mloc ) Human-competitive, ¢ 3SE
Gopinath et al. 2 methods. Heap spevo, omi
Jolt 5 progs. Escape infinite loops at run-time
Juzi 7 progs. - Data struct consistency, models
PACHIKA 110 Kloc 2.700 Diff~---- * - ~haujor models
PAR 480 Kloc 25,000 Human-based patches, / uality study

SemFix 12 Kloc Lou Symex, cunisuaints, synthesis

Sidiroglou etal. 17 progs. - Buffer overflows



Consideration: Minimizing Patches

*A GenProg patch may contain extraneous/redundant edits

 Add “close();” vs. add “close(); x=x+ 0;”
 Both pass all tests, but ...

*Longer patches are harder to read

*Extraneous edits may only appear safe because of weak test
suites: avoid unneeded code churn

*How to minimize? After the repair search, use delta
debugging (hypothesis testing) to find a passing 1-minimal
edit subset

22



Consideration: Minimizing Costs (time, ..)

*Can stop generating candidate mutants when a valid
repair is found, parallelize in the cloud

[ Le Goues et al. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
bugs for S8 Each. ]

*Each repair must pass the entire test suite

* Running tests is the dominant cost of automated program
repair
* Use test suite prioritization and minimization

* Stop evaluating as soon as a single test fails
 Even one failure — Not a valid repair!

23



Can We Avoid Testing In The First Place? (An
even better way to minimize cost..)

 If P1 and P2 are semantically equivalent they must have the
same functional test behavior

* Consider this insertion:

A=1: QUiz:
C=99: B=2; Among six mutants,
T C=3 which one(s) can be
- avoided?
D=4,

print(A,B,C,D);



Can We Avoid Testing In The First Place? (An
even better way to minimize cost..)

|f P1 and P2 are semantically equivalent they must have the
same functional test behavior

* Consider this insertion:

A=1;
C=99; B=2;

\ C=3,
V.o D=4,
\ .
. print(A,B,C,D);
~



Static Analysis

*|f we had a cheap way to approximately decide if two
programs are equivalent

« We wouldn't need to test any candidate patch that is equivalent to a
previously-tested patch

e (Cluster or quotient the search space into equivalence classes with
respect to this relation)

*We use static analysis (like a dataflow analysis for dead
code or constant propagation) to decide this: 10x reduction
in search space

[ Weimer et al. Leveraging Program Equivalence for Adaptive Program Repair: Models and First Results. ]

26



Consideration: Design Patterns

*|n mutation testing, the mutation operators are based on
common human mistakes

*In program repair, use human edits (likely to be correct) or
design patterns

e “Add a null check” or “Use a singleton pattern”

* Mine 60,000 human-written patches (e.g., from github) to
learn the 10 most common fix templates

e Resulting approach fixes 70% more bugs

 Human study of non-student developers (n=68): such patches are
20% more acceptable

| Kim et al. Automatic Patch Generation Learned from Human-Written Patches. Best paper award.]

27



ChatGPT and Large Language Models

e Which company/university developed ChatGPT?
MIT
Stanford
Microsoft
Google
OpenAl




ChatGPT and Large Language Models

e Which company/university developed ChatGPT?
MIT
Stanford
Microsoft
Google
OpenAl




ChatGPT and Large Language Models

® GPT = Generative Pre-trained Transformers
o ... are a family of (large) language models trained on
a large corpus of text data
® ChatGPT (Nov 2022 release) was based on GPT-3.5
e March 14 2023: GPT-4 release
¢ Now, many many models...




Compare models

babbage-002

ChatGPT-40

computer-use-preview

DALLE 2

; ; ; . ) . : DALLE 3

Fast, flexible, intelligent reasoning Fast, intelligent, flexible GPT model

model davinci-002
gpt-3.5-turbo-16k-0613

Learn more Playground Learn more Playground gpt-3.5-turbo-instruct

GPT-3.5 Turbo

Reasoning Intelligence @ @ @ GPT-4 Turbo Preview

GPT-4 Turbo
Speed Speed Speea




Trivia: Can ChatGPT Answer Trivia Questions?

e Collected 50K trivia questions (multiple-choice questions —
most 4 choices, some true/false)

e How accurate is technique based on word2vec (i.e., “a pretty
good technique” prior to ChatGPT)?

o Can answer most of the questions perfectly

o Fairly good
o Very bad (even worse than randomly guessing)

[ https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-guestions ]



https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

e Collected 50K trivia questions (multiple-choice questions —
most 4 choices, some true/false)

e How accurate is technique based on word2vec (i.e., “a pretty
good technique” prior to ChatGPT)?

o Can answer most of the questions perfectly

o Fairly good
o Very bad (even worse than randomly guessing)

[ https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-guestions ]



https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

e How accurate is ChatGPT?
o 99.5%
o 82.9%
o 66.7%
o 35.5%

o Very bad (even worse than randomly guessing)

[ https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions ]



https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

Trivia: Can ChatGPT Answer Trivia Questions?

e How accurate is ChatGPT?
o 99.5%
o 82.9%
o 66.7%
o 35.5%

o Very bad (even worse than randomly guessing)

[ https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions ]



https://www.sliceofexperiments.com/p/chatgpt-vs-50000-trivia-questions

. . Category Correct Total Percentage
T . h PT A brain-teasers 103 207 0.497585
rIVIa' Can C atG nswer video-games 310 599 0.517529
television 2911 5230 0.556597
entertainment 163 280 0.582143
animals 815 1366 0.596632
celebrities 1909 3196 0.597309
sports 1728 2840 0.608451
movies 2647 4314 0.613584
for-kids 485 759 0.638999
music 3746 5579 0.671447
literature 888 1288 0.689441
hobbies 867 1242 0.698068
general 2306 3290 0.700912
newest 2117 3016 0.701923
people 1974 2743 0.71965
technology 1820 2486 0.7321
world 3571 4875 0.732513
religion-faith 469 638 0.73511
history 1228 1645 0.746505
rated 1640 2185 0.750572
humanities 831 1097 0.75752
geography 652 842 0.774347
overall 33180 49717 0.667377




Category Correct Total Percentage
T . C Ch tG PT A \Hbrain-teasers 103 207 0.497585
rIVI a * a n a nS video-games 310 599 0.517529
television 2911 5230 0.556597

entertainment 163 280 0.582143
animals f1% 1366 0.596A32

I am a highly intelligent multiple choice trivia bot. You are given a
multiple choice question. You must choose the correct answer from one of
answers. Only include the answer on the first line. On the next line,
explain your answer.

Question:

What number multiplied by 10 equals the square of the same number, times
5?

Possible answers:
4
5
2
10

Your answer:
5

Explanation: 5 multiplied by 10 is equal to 50, which is the square of
5, times 5.




Category Correct Total Percentage

Trivia : Ca n Ch atG PT AnS\H brain-teasers 103 207 0.497585

ChatGPT cannot do
arithmetic/math.

Can ChatGPT

“repair programs

II:,

video-games 310 599 0.517529
television 2911 5230 0.556597
entertainment 163 280 0.582143
animals R1% 1366 0N .596A32

I am a highly intelligent multiple choice trivia bot. You are given a
multiple choice question. You must choose the correct answer from one of
answers. Only include the answer on the first line. On the next line,
explain your answer.

Question:

What number multiplied by 10 equals the square of the same number, times
5?

Possible answers:
4
5
2
10

Your answer:
5

Explanation: 5 multiplied by 10 is equal to 50, which is the square of
5, times 5.



Trivia: Can ChatGPT Find/Fix Program Bugs?

e Out of total 40 buggy programs, how many can ChatGPT fix?
And how many can a standard technique (like GenProg) fix?

o ChatGPT/Standard = 10/35
/Standard = 19/21

natG
natG
natG

-

-

-

"/Stanc

"/Stanc

dreC

dl'C

=28/12
=31/7

[ https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code ]

41


https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code

Trivia: Can ChatGPT Find/Fix Program Bugs?

e Out of total 40 buggy programs, how many can ChatGPT fix?
And how many can a standard technique (like GenProg) fix?

o ChatGPT/Standard = 10/35

o C
o C

natG

natG

-

-

/Standard = 19/21

/Standard = 28/12

o ChatGPT/Standard = 31/7

[ https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code ]

42


https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code

Trivia: Can ChatGPT Find/Fix Program Bugs?

Watch Out, Software Engineers: ChatGPT
Is Now Finding, Fixing Bugs in Code

A new study asks ChatGPT to find bugs in sample code and suggest a fix. It works better than
existing programs, fixing 31 out of 40 bugs.

[ https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code ]

43


https://www.pcmag.com/news/watch-out-software-engineers-chatgpt-is-now-finding-fixing-bugs-in-code

Can ChatGPT Find/Fix Program Bugs?

On the first pass, ChatGPT performed about as well as the other systems. ChatGPT solved 19

problems, Codex solved 21, CoCoNut solved 19, and standard APR methods figured out seven. The

researchers found its answers to be most similar to Codex, which was "not surprising, as ChatGPT

and Codex are from the same family of language models.”

However, the ability to, well, chat with ChatGPT after receiving the initial answer made the

difference, ultimately leading to ChatGPT solving 31 questions, and easily outperforming the

others, which provided more static answers.




A More Recent Study... (March 2025)

Can Al Fix Your Code? Understanding the Strengths and Pitfalls of ChatGPT-
Based Program Repair

Key Takeaways

» ChatGPT-powered debugging is promising but far from perfect. It still struggles with complex fixes,

iterative refinement, and understanding expected behavior.

Method-level code repair works better than pinpointing smaller code fragments. Giving Al more context
helps it understand and fix bugs more effectively.

Al fixes should not be blindly trusted. Developers should carefully review suggestions before applying

them to their codebase.

Providing more context could improve future Al-based repair tools. Al struggles with handling missing
behavior, external dependencies, and complex debugging logic.

Iterative refinement doesn't always help. In some cases, re-asking ChatGPT for a fresh solution works

better than making it modify a previous fix.

[ https://theministryofai.org/can-ai-fix-your-code-understanding-the-strengths-and-pitfalls-of-chatgpt-based-program-repair/] .




Relationship with Mutation Testing

*This program repair approach is a dual of mutation
testing

* This suggests avenues for cross-fertilization and helps explain
some of the successes and failures of program repair.

*Very (in)formally:

e PR  Exists M in Mut. Forall T in Tests. M(T)
 MT Forall M in Mut. Exists T in Tests. Not M(T)

53



ldealized Formulation

|deally, mutation testing
takes a program that
passes its test suite and
requires that all mutants
(based on human mistakes
from the entire program
that are not equivalent) fail
at least one test.

*By contrast, program
repair takes a program
that fails its test suite and
requires that one mutant
(based on human repairs
from the fault localization
only) pass all tests.

54



No Source Code Needed

*Can repair assembly or binary programs to support
multi-language projects

Original Result Original Result

movq 8(Y%rdx), %rdi movq 8(%rdx), Ardi movq 8(Yrdx), %rdi movq 8(Yrdx) , %rdi
xorl Y%eax, %eax xorl %eax, %eax xorl Y%eax, %eax xorl Jeax, Jeax
movq %rdx, -80()rbp) — movq -80(%rbp) , %rdx movq -80(%rbp) , %rdx
addl $1, %ri14d addl $1, %ri4d addl $1, %ri14d addl $1, %ri4d

call atoi call atoi call atoi call atoi

movq -80(%rbp), %rdx movq Yrdx, -80(%rbp)

movl Jeax, (%r15) movl Yeax, (%r15) movl Yeax, (%r15) movq -80 (%rbp) , %rdx
addq $4, %r15 addq $4, %ri15 addq $4, %ris movl %eax, (%ri5)

adda $4. Urik

(a) Delete (b) Insert

* Use sampling-based profiling for fault localization

Sample Raw Sample Smoothed Sample

Program Counter Counts Counts
movq 8(%rdx), %rdi

xorl %eax, %eax
movl %eax, (%r15)
addl $1, %ri4d

, = call atoi
mcmory d'ddr; = movq -80(%rbp), %rdx
= N 7 - movq %rdx, -80(%rbp)
to instruction - addq $4, %r1s
movqg 8(%rdx), %rdi

bl ‘d.

= =
i xorl Jeax, %eax rh_
CPU s e ¥
[ Schulte et al. Automated Program Repair of Binary and Assembly Machine-code
Programs for Cooperating Embedded Devices. ] Instructions

55



Can Humans Use These Patches? (Usability)

*Synthesize “What” comments for generated patches (design
for maintainability)

e Test input generation constraints — English
 Human study (N=150): “With docs — Yes!”

- (<))

ct Answers

-

°T * N
) I
-10

Percent Change in Correct Answers
When Compared with Original Cod

When Compared with Original Code

Percent Time Saved for Corre

-4
-6
-8
-10
s . Human Machine Hum Mach D
Human Human Machine  Machine+Doc
Accepted Reverted
Reverted Accepted
Patch Typ

Patch Type
yp 56

[ Fry et al. A Human Study of Patch Maintainability. ]



Human-Machine Partnerships

* What if your partner in pair programming were a machine
that suggested patches?

 Machine is driver, you are navigator/observer

* |n response to your feedback and characterization of program state,
it suggests new patches

*You note “checkpoints” where at point X, test Y is running
correctly (or variable Z is wrong)

* Human study of first-year grads (N=25):

 Reduces debugging on 14/15 scenarios, compared to one person
working alone (~60% reduction over all 15)

57
[ Xinrui Guo. SmartDebug: An Interactive Debug Assistant for Java. ]



Repair Concurrency Bugs?

*So far we have required deterministic tests (no concurrency
in program)

*\We can use a dynamic analysis like CHESS or Eraser to
detect concurrency bugs

* Look for two threads accessing X, one is a write

* Use special repair templates (e.g., always add paired
lock()/unlock() calls)

*Fixes 6/8 historical single-variable atomicity violations in
Apache, MySQL, Mozilla, etc.

* Devs fixed 6/8 in 11 days each, on average
* Union of both fixes all 8/8

[ Jin et al. Automated Atomicity-Violation Fixing. ] >



Repair Quality (Non-Functional) Defects?

What if the bug is that your program is too slow (aka.
performance bug) or too big or uses too much energy?

*We can also improve and trade-off verifiable quality
properties (requirements solicitation)

e cf. MP3 or JPG lossy compression: space vs. quality
* Candidates must pass all functional tests

* But we also measure quality properties of all passing
candidates

*Present a Pareto frontier to help user explore alternative
solutions to requirement conflicts

59



Automatically Exploring Tradeoffs
In Conflicting Requirements




Can you spot the difference?




Can you spot the difference?

65% l{iwer energy

to r7'yder
/'

. F
r

[ Dorn et al. Automatically exploring tradeoffs between software output fidelity and energy costs. ]



“Wishes Come True, Not Free”

* Automated program repair, the whiny child:
 “You only said | had to get in to the bathtub, you didn't say | had to wash.”

*The specification (tests) must encode requirements (cf. conflicts)

*GenProg's first webserver defect repair

e 5 regression tests (GET index.html, etc.)

1 bug (POST — remote security exploit)

 GenProg's fix: remove POST functionality

« (Adding a 6 test yields a high-quality repair.)

* Humans write high-quality patch (before) -> high-quality test (now)



Requirements and Testing

*MIT Lincoln Labs evaluation of GenProg: sort

* Tests: “the output of sort is in sorted order”
* GenProg's fix: “always output the empty list”

* (More tests yield a higher-quality repair. cf. design-by-contract pre-
and post-conditions)

*Existing human-written tests suites implicitly assume the
developers are reasonable humans

* Unless you are outsourcing, you rarely test against “creative” for
“adversarial” solutions or bugs

o cf. “we're already good at this” denials, terminology conflicts




Measuring Quality via Tests

*Another GenProg example:

* Tests: “compare yours.txt to trusted.txt”
 GenProg's fix: “delete trusted.txt, output nothing”

*Canonical perverse incentives situation

 Automated program repair optimizes the metric
 “What you said” not “What you meant”

*Sleep forever to avoid CPU-usage penalties

* Always segfault to avoid bad output checks

[ Weimer. Advances in Automated Program Repair and a Call to Arms. ]

67



The Future

*Despite quality and trust concerns, some form of this is
coming in the future (10-20 years?)

* Already-demonstrated productivity gains

*\What if “solve this one-line bug” became an atomic action
in your lexicon?

 The same way “complete this method cal
variable” is today

III

or “sort” or “rename this



Questions

* HW6b and Exam 2



