
Patterns and

Anti-Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 1

Prof. Kochunas

EECS 481 (W25) Special thanks for James Perretta!

4/2/2025 EECS 481 (W25) – Design Patterns 2

• We want to deliver and support a quality software
product

• We understand the stakeholder requirements

• We understand process and design

• We understand quality assurance

• How should we make process and
design decisions designs the
first time?

The Story so far…

4/2/2025 EECS 481 (W25) – Design Patterns 3

• Software design patterns are general, reusable
solutions to commonly-occurring problems. They
separate the structure of a system from its
implementation. They apply in almost all OO languages.

• Every design has tradeoffs. Object-oriented design
patterns often trade verbosity or efficiency for
extensibility.

• We'll consider structural, creational, and behavioral
design patterns.

One-Slide Summary

4/2/2025 EECS 481 (W25) – Design Patterns 4

• 10,000 Foot View

• Structural Patterns

• Creational Patterns

• Behavioral Patterns

Outline (the emotional journey)

4/2/2025 EECS 481 (W25) – Design Patterns 5

1. (knowledge) explain at a high level what types of
software problems structural, creational, and
behavioral patterns deal with

2. (knowledge) explain what an anti-pattern is

3. (skill) think critically about the implications of design
choices

4. (knowledge) explain some of the patterns discussed in
this lecture

Learning Objectives: by the end of today’s lecture you
should be able to…

6

10,000 ft view

4/2/2025 EECS 481 (W25) – Design Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 7

Patterns in Non-Software Design

4/2/2025 EECS 481 (W25) – Design Patterns 8

• The Design of Everyday
Things

• design serves as the
communication between
object and user

• although people often blame
themselves when objects appear to
malfunction, it is not the fault of the
user but rather the lack of intuitive
guidance that should be present in
the design

• behavioral psych + ergonomics

Further Real-World Reading

4/2/2025 EECS 481 (W25) – Design Patterns 9

• The book popularizing software
design patterns is often called the
Gang of Four book after its four
authors

• (Sometimes handy for talking to
interviewers or practitioners.)

Jargon

4/2/2025 EECS 481 (W25) – Design Patterns 10

• Consider code change as a certainty
• Redesign is expensive. Choosing the right pattern helps

avoid it.

• Consider your requirements and their changes
• Use patterns that fit your current or anticipated needs.

• Consider multiple designs
• Diagram your designs before writing code.

High-Level Design Pattern Advice

11

Structural Patterns

4/2/2025 EECS 481 (W25) – Design Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 12

• Structural design patterns ease design by
identifying simple ways to realize relationships
among entities.

• In software, they usually
• Build new classes or interfaces

from existing ones
• Hide implementation details
• Provide cleaner or more

specialized interfaces

Structural Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 13

• The adapter design
pattern is a structural
design pattern that
converts the interface
of a class into another
interface clients
expect.

Adapter Design Pattern

4/2/2025 EECS 481 (W25) – Design Patterns 14

• Implementing a Stack interface using
a LinkedList interface

Adapter Examples (1/2)

4/2/2025 EECS 481 (W25) – Design Patterns 15

• Early implementations of fstream in C++
• … were simply adapters around the C FILE macro

• The autograder used for this course securely runs
student code

• It does this via an adapter around a containerization
library (e.g., docker)

• Handles quirks of the library

• Makes sure that certain options are always used

Adapter Examples (2/2)

4/2/2025 EECS 481 (W25) – Design Patterns 16

• The composite design pattern allows clients to
treat individual objects as groups of objects
uniformly

• e.g., selecting and moving objects in PowerPoint

• The proxy design pattern provides a surrogate or
placeholder for another object to control access to it

• std::vector<bool> exposes std::vector<bool>::reference
as a method of accessing individual bits. In particular,
objects of this class are returned by operator[] by value.
https://en.cppreference.com/w/cpp/container/vector_bool

Other Structural Patterns

https://en.cppreference.com/w/cpp/container/vector_bool

17

Creational

Patterns

4/2/2025 EECS 481 (W25) – Design Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 18

• Creational design patterns avoid complexity by
controlling object creation so that objects are created in
a manner suitable for the situation. They make a system
independent of how its objects are created.

• A plain constructor may not allow you to
• Control how and when an object is used

• Overcome language limitations (e.g., no default arguments)

• Hide polymorphic types

Creational Design Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 19

• In the Named Constructor Idiom you declare the
class's normal constructors to be private or
protected and make a public static creation method.
class Llama {

public:

static Llama* create_llama(string name) {

return new Llama(name);

}

private: // Making ctor private

Llama(string name_in): name(name_in) {}

string name;

};

The Named Constructor Idiom

4/2/2025 EECS 481 (W25) – Design Patterns 20

• Suppose we need to create and use polymorphic
objects without exposing their types to the client

• Recall: design for maintainability and extensibility. We
don't want the client to depend on (and thus “lock in”) the
actual subtypes.

• The typical solution is to write a function that creates
objects of the type we want but returns that object
so that it appears to be (“cast to”) a member of the
base class

A Common Problem

4/2/2025 EECS 481 (W25) – Design Patterns 21

• The factory method pattern is a creational design
pattern that uses factory methods to create objects
without having the return type reveal the exact subclass
created.

Payment * payment_factory(string name, string type) {
if (type == “credit_card”)

return new CreditCardPayment(name);
else if (type == “bitcoin”)

return new BitcoinPayment(name);
…

}

Payment * webapp_session_payment =
payment_factory(customer_name, “credit_card”);

The Factory Pattern

4/2/2025 EECS 481 (W25) – Design Patterns 22

• You may also encounter implementations in which
special methods create the right type:

class PaymentFactory {
public:
static Payment* make_credit_payment(string name){

return new CreditCardPayment(name);
}
static Payment* make_bc_payment(string name){

return new BitcoinPayment(name);
}

};

Payment * webapp_session_payment =
PaymentFactory::make_credit_payment(customer_name);

Factory Pattern Variant

4/2/2025 EECS 481 (W25) – Design Patterns 23

• Suppose we're implementing a computer game with
a polymorphic Enemy class hierarchy, and we want
to spawn different versions of enemies based on the
difficulty level.

• Normal Difficulty → Goomba

• Hard Difficulty → Spiked Goomba

Scenario: Difficulty-Based Enemies

4/2/2025 EECS 481 (W25) – Design Patterns 24

• An anti-pattern is a common response to a recurring
problem that is usually ineffective and risks being
counterproductive.

• A bad solution (anti-pattern) would be to check the
difficulty at each of the many places in the code related
to spawning enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
goomba = new Goomba();

else if (difficulty == “hard”)
goomba = new SpikedGoomba();

Anti-Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 25

• The abstract factory pattern
encapsulates a group of factories that
have a common theme without specifying
their concrete classes.

// Only have to do this once!

AbstractEnemyFactory* factory = nullptr;

if (difficulty == “normal”)

factory = new NormalEnemyFactory();

else if (difficulty == “hard”)

factory = new HardEnemyFactory();

Enemy* goomba = factory->create_goomba();

Abstract Factory Design Pattern

4/2/2025 EECS 481 (W25) – Design Patterns 26

• Suppose we have some application state that needs
to be globally accessible. However, we need to
control how that data is accessed and updated.

• The anti-pattern (bad) solution is to have a naked
global variable.

• Fails to control access or updates!

• A “less bad” solution is to put all of the state in one
class and have a global instance of that class.

Scenario: Global Application State

4/2/2025 EECS 481 (W25) – Design Patterns 27

• Global variables are usually a
poor design choice. However:

• If you need to access some state everywhere, passing it
as a parameter to every function clutters the code
(readability vs. …)

• This is not an argument for using global variables to avoid
passing a few parameters.

• Or if you need to access state stored outside your
program (e.g., database, web API)

• Then global variables may be acceptable

Acceptability of Global Variables

4/2/2025 EECS 481 (W25) – Design Patterns 28

• The singleton pattern
restricts the instantiation of a
class to exactly one logical
instance. It ensures that a
class has only one logical
instance at runtime and
provides a global point of
access to it.

Singleton Design Pattern

4/2/2025 EECS 481 (W25) – Design Patterns 29

class Singleton {

// public way to get “the one logical instance”

public static Singleton get_instance() {

if (Singleton.instance == null)

Singleton.instance = new Singleton();

return Singleton.instance;

}

private static Singleton instance = null;

private Singleton() { // only runs once

billing_database = 0;

System.out.println("Singleton DB created");

}

// Our global state

private int billing_database;

public int get_billing_count() {

return billing_database;

}

public void increment_billing_count() {

billing_database += 1;

}

}

Singleton Example

4/2/2025 EECS 481 (W25) – Design Patterns 30

• What is the output
of this code?

class Main {
public static void main(String[] args) {

int bills = Singleton.get_instance().get_billing_count();
System.out.println(bills);

Singleton.get_instance().increment_billing_count();
bills = Singleton.get_instance().get_billing_count();
System.out.println(bills);

}
}

Single Use Example

4/2/2025 EECS 481 (W25) – Design Patterns 31

• What is the output
of this code?

class Main {
public static void main(String[] args) {

int bills = Singleton.get_instance().get_billing_count();
System.out.println(bills);

Singleton.get_instance().increment_billing_count();
bills = Singleton.get_instance().get_billing_count();
System.out.println(bills);

}
}

Single Use Example

4/2/2025 EECS 481 (W25) – Design Patterns 32

• Could we avoid typing Singleton.get_instance() so many
times by doing this at all of the points in our program
that use the singleton?
Single s = Singleton.get_instance();

System.out.println(s.get_billing_count());

… // later

System.out.println(s.get_billing_count());

• Is this a good idea or not?

Singleton.get_instance()

4/2/2025 EECS 481 (W25) – Design Patterns 33

Single s = Singleton.get_instance();

System.out.println(s.get_billing_count());

… // later

System.out.println(s.get_billing_count());

• This is a bad idea. There is no guarantee that
Singleton.get_instance() will return the same pointer
(same object) every time it is called. (It may return
different concrete copies of the same logical item.)

Singleton.get_instance()

4/2/2025 EECS 481 (W25) – Design Patterns 34

• Suppose we are implementing a computer version
of the card game Euchre. In addition to a few
abstract datatypes, we have a Game class that
stores the state needed for a game of Euchre.
When started, our application prototype plays one
game of Euchre and then exits.

• Should we make Game a singleton?

Singleton Design Scenario

4/2/2025 EECS 481 (W25) – Design Patterns 35

• Making Game a Singleton is tempting
• There is only one Game instance in our application

• However, there only happens to be one instance of
Game. There's no requirement that we only have one
instance.

• We should only use the Singleton pattern when current
or future requirements dictate that only one instance
should exist.

• Singleton is not a license to make everything global.

Scenario Considerations

36

Trivia Break

4/2/2025 EECS 481 (W25) – Design Patterns

4/2/2025 EECS 481 (W25) – Design Patterns 37

• This priest and professor was a leader
in the Mexican War of Independence
(1810-1820). After giving the famous
“Cry of Dolores” speech he gathered
an army of 90,000 farmers and fought
the Spanish. His troops fled and he
was betrayed and executed. Although
he did not live to see independence in
1821, the day of his speech (16
September 1810) is officially
recognized as the day of Mexican
independence.

Trivia: Mexican History

4/2/2025 EECS 481 (W25) – Design Patterns 38

• This national capital is the most populous city in Western
Asia. Almost all inhabitants speak Persian (تهران). It is home
to the Azadi Tower memorial, hosted a WWII conference
between Roosevelt, Stalin and Churchill, and despite air
pollution issues, it is a popular migration destination.

Trivia: Geography

4/2/2025 EECS 481 (W25) – Design Patterns 39

• This Mattel fashion doll franchise
(and associated web series) was
created in 2010. It features
fictional “ghouls” and “mansters”,
such as vegan vampire
Draculaura and clumsy Frankie
Stein, attending the eponymous
school. It was so successful that
rival lines such as Bratzillaz and
Equestria Girls are viewed as
direction reactions attempting to
cash in on the same trend.

Trivia: US Toys

4/2/2025 EECS 481 (W25) – Design Patterns 40

• How long does it take you to choose from among
multiple stimuli, even when you know the right answer?

• An early experiment presented subjects with a few lamps.
Each lamp was labeled (e.g., A, B, C, etc.). Every five
seconds, one of the lamps would light up. The subject
was asked to press the key, as quickly and as accurately
as possible, corresponding to the lamp that lit up.

• While only one lamp was ever lit, the experimenter varied
the total number of other lamps (e.g., from 2 to 10).

• How does your reaction time vary as a function of the
number of choices?

Psychology: Reaction and Information

4/2/2025 EECS 481 (W25) – Design Patterns 41

Or your at Dave
and Busters

4/2/2025 EECS 481 (W25) – Design Patterns 42

• Given 𝑛 equally probable choices, the average
reaction time T required for a human to choose
among them is: 𝑇 = 𝑏 ⋅ log2(𝑛 + 1)

• 𝑏 is an empirically-learned constant

• Increasing the number of choices increases
decision time logarithmically. The amount of time
taken to process a certain amount of bits is known
as the rate of gain of information.

Psychology: Hick’s Law

[Hick, W. E. (1 March 1952). "On the rate of gain of information". Quarterly Journal of Experimental Psychology. 4 (1): 11–26]

[Hyman, R (March 1953). "Stimulus information as a determinant of reaction time". Journal of Experimental Psychology. 45 (3):

188–96.]

4/2/2025 EECS 481 (W25) – Design Patterns 43

• Implications for SE:

• Hick's Law is often used to justify menu design
decisions in human interfaces – from restaurant menus
to UI design in computing. Users given many choices
have to take time to interpret and decide, work they
typically don't want (cf. analysis paralysis, Mac vs.
Windows design philosophy, etc.). Why don't we like
voluminous bug-finding tool output again?

Psychology: Hick’s Law

44

Behavioral

Patterns

4/2/2025 EECS 481 (W25) – Design Patterns

When you expect a

test to fail and it

passes

When you realize

it was because

you forgot to

recompile with

your updates

4/2/2025 EECS 481 (W25) – Design Patterns 45

• Behavioral design patterns that support common
communication patterns among objects. They are
concerned with algorithms and the assignment of
responsibilities between objects.

• The iterator pattern is a common behavioral design
pattern. It provides a uniform interface for traversing
containers regardless of how they are implemented.

Behavioral

4/2/2025 EECS 481 (W25) – Design Patterns 46

• Suppose we're
implementing a video
streaming website in which
users can “binge-watch”
(or “lock on”) to one
channel. The user will then
see that channel's videos in
sequence. When the last
such video is watched, the
user should stop binge-
watching that channel.

Scenario: Binge-Watching on Video Website

4/2/2025 EECS 481 (W25) – Design Patterns 47

• When the last video is watched, call
release_binge_watch() on the user.

• What are some problems with this approach?

Binge-Watch Anti-Pattern

4/2/2025 EECS 481 (W25) – Design Patterns 48

• User and Channel are tightly coupled
• Changing one likely requires a change to the other

• The design does not support multiple users

• What if we later want to update a user's
“recommendation queue” when they finish binge-
watching a channel?

• Whenever requirements change and we want to do
something else when a video finishes (e.g., update
advertising) we must update the Channel class and
couple it to the new feature

Anti-Pattern Discussion

4/2/2025 EECS 481 (W25) – Design Patterns 49

• The observer pattern (also called “publish-subscribe”) allows dependent
objects to be notified automatically when the state of a subject changes.
It defines a one-to-many dependency between objects so that when one
object changes state, all of its dependents are notified.

Observer Design Pattern

Note: subscribe and unsubscribe can be static or non-static, depending on implementation.

Subject/Publisher
public:

- subscribe()
- unsubscribe()

Observer/Subscriber
public:

- update()

Observer subscribes to
subject for updates

Subject calls
update() when
state changes

4/2/2025 EECS 481 (W25) – Design Patterns 50

• How many times is “Received update” printed?

Observer Pattern Exercise

4/2/2025 EECS 481 (W25) – Design Patterns 51

Observer Pattern for Binge-Watch Scenario

*Abstract means “derived classes must override this method”

4/2/2025 EECS 481 (W25) – Design Patterns 52

Observer for Binge-Watch Implementation

4/2/2025 EECS 481 (W25) – Design Patterns 53

• Having multiple “update_” functions, one for each
type of state change, keeps messages granular

• Observers that do not care about a particular type of
update can ignore it (via an empty implementation of the
update function)

• Generally it is better to pass the newly-updated data
as a parameter to the update function (push) as
opposed to making observers fetch it each time
(pull)

Observer “update_” Functions

4/2/2025 EECS 481 (W25) – Design Patterns 54

• Suppose we're building a social video streaming
website where both users and channels can receive
likes (for good comments or good videos). When a
user or channel receives a like, it gets karma. At
50,000 karma, a channel gets a trophy. At 50,000
karma, a user gets ad-free access.

Scenario: “Likes” In Social Streaming Website

4/2/2025 EECS 481 (W25) – Design Patterns 55

Likes: First Design

Note: receive_like is
called on an Actor
when someone likes its
comment or video, etc.

4/2/2025 EECS 481 (W25) – Design Patterns 56

Likes: Anti-Pattern Observations

4/2/2025 EECS 481 (W25) – Design Patterns 57

• The template method behavioral design pattern
involves a method in a superclass that operates in terms
of high-level steps that are implemented by abstract
helper methods provided by concrete implementations.

• Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template method
design lets subclasses redefine certain steps of that
algorithm without changing the algorithm's structure.

Template Method Design Pattern

4/2/2025 EECS 481 (W25) – Design Patterns 58

Likes: Template Method

4/2/2025 EECS 481 (W25) – Design Patterns 59

Likes: Template Method Implementation

4/2/2025 EECS 481 (W25) – Design Patterns 60

• In the first (anti-pattern) implementation, the
derived class called the base class version of
receive_like()

• In the template method implementation, the non-
virtual base class receive_like() called derived class
methods

• “Don't call us, we'll call you!”

Template Method: The “Hollywood Principle”

4/2/2025 EECS 481 (W25) – Design Patterns 61

• Suppose we want to add an AffiliateChannel to our
setup. An AffiliateChannel does not receive a trophy on
50,000 karma, but instead received nothing.

• Modify our design to include this new type.

Exercise

4/2/2025 EECS 481 (W25) – Design Patterns 62

• Suppose we want to add an AffiliateChannel to our
setup. An AffiliateChannel does not receive a trophy on
50,000 karma, but instead received nothing.

• Modify our design to include this new type.

Exercise

4/2/2025 EECS 481 (W25) – Design Patterns 63

• Further reading from EECS 381
http://www.umich.edu/~eecs381/lecture/notes.html

• See “Idioms and Design Patterns” PDFs

• Gang of Four
https://search.lib.umich.edu/catalog/record/99187292508206381

Questions?

http://www.umich.edu/~eecs381/lecture/notes.html
https://search.lib.umich.edu/catalog/record/99187292508206381

