\WMBGINE "TRUTH \S A SPHERE:

THE SPUERE

Static and

Dataflow
Analysis

THE SPUERE
\S ALL

(two-part lecture)




This week
(in person + remote)

Next Mon
(in person + remote)

Next Wed: Guest Lecture
(Zoom only)

Static & Dataflow Analysis (1/2)
GE)

Static & Dataflow Analysis (2/2)
[qa]

Fault Localization and Profiling

[bugs]

Guest Lecture by Natalia Sanchez
Rocafort (Darktrace, UM alum!)

(slides)

[guest]

Note that HW3 is due before Exam 1.

HW 3 (Mutation Testing) Due

(you pick a 2-hour window within this 24-
hour day)

Work on HW3!

Exam 1



Foo(ptr, x) {
if (x > 10) A
deref ptr
)



Foo(ptr, X, vy, z, ...) {
if (x > 10) A
deref ptr
}



The Story So Far ...

*Quality assurance is critical to software engineering.

*Testing is the most common dynamic approach to QA.
* But: race conditions, information flow, profiling ...

*Code review and code inspection are common static
approaches to QA.

*Today: automated static analysis



One-Slide Summary

eStatic analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

eDataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.



Doesn't GenAl Save Us?

Resedrch: Quantifying GitHub by github copilot researchers
Copilot’s impact in the enterprise

with Accenture

quality. We found that our Al pair programmer helps developers code up to 55%
faster and that it made 85% of developers feel more confident in their code quality.

Can GenAl Actually Improve
Developer Productivity?

Uplevel Data Labs analyzed the difference in key engineering

metrics across a sample of 800 developers before and after

GitHub Copilot access. The fir Key Insight:

from what devs report in surv Developers with Copilot access saw a significantly higher bug rate while

+ 4] o/o their issue throughput remained consistent.

This suggests that Copilot may negatively impact code quality.
IN BUG RATE

Engineering leaders may wish to dig deeper to find the PRs with bugs and

put guardrails in place for the responsible use of generative Al




Two Fundamental Concepts

e Abstraction

* Capture semantically-relevant details
* Elide (hide) other details
 Handle “I don't know”: think about developers



Foo(ptr, X, vy, z, ...) {
if (x > 10) A
deref ptr
}



Two Fundamental Concepts

e Abstraction

* Capture semantically-relevant details
* Elide (hide) other details
 Handle “I don't know”: think about developers

*Programs As Data

* Programs are just trees, graphs or strings

 And we know how to analyze and manipulate those (e.g., visit every
node in a graph)

10



goto fail;

Why care about static analysis?

11



“Unimportant” SSL (Secure Sockets Layer) Example

static 0SStatus SSLVerifySignedServerKeyExchange(
SSLContext *ctx, bool isRsa,SSLBuffer signedParams,
uint8_t *signature,UInt16 signaturelLen) {
OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;
fail: How do you reason about

SSLFreeBuffer(&signedHashes); . p)
SSLFreeBuffer (&hashCtx) ; thls program .

return err;}



Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head * get_free_buffer(struct
stripe_head * sh,int b_size) {

How do you reason
struct buffer_head *bh;

unsigned long flags: about this program?

save_flags(flags);
cli(); // disables interrupts
if ((bh = sh->buffer_pool) == NULL)
return NULL;
sh->buffer_pool = bh -> b_next;
bh->b_size = b_size;
restore_flags(flags); // enables interrupts
return bh;

13



Could We Have Found Them? (Testing? Manually?)

* How often would those bugs trigger?

e Linux example:

 What happens if you return from a device driver with interrupts disabled?

* Consider: that's just one function
... iIn a 2,000 LOC file

... in .a 60,000 LOC module
... in the Linux kernel

*Some defects are very difficult to find via testing or manual
Inspection



CNET » News » Security & Privacy » Klocwork: Our source code analyzer caught Apple's ...

Klocwork: Our source code
analyzer caught Apple's
'gotofail' bug

If Apple had used a third-party source code analyzer on its encryption
library, it could have avoided the "gotofail" bug.

a by Declan McCullagh | February 28, 2014 1:13 PM PST
»

43 W Follow

ﬁ 57 L{!_i 223 m 23 g+1(< 5 More + Comments

25

UNSLALM CIN (Warmngl  More sviormat on

» N SecureTranspon s )
> L4 securetrampane + (30 623 if (Cerr « ReodyMosh(SSSLHashSHAL, &hash(tx)) !« @) Code I3 wnreachatie.

» (8 secererranpans o b 624 goto faoll; TraceSack

> (N SecureTrasspontivie s € Af ((err = SSLMashSHAL. update(Bhash(tx, &clientRandom)) != @) = ¥ O /usen/iedelvien werkasace/eax-10.9
» 5 ssth goto foll; © wieyExchange < 612 The code It |
> 8 wi3Caloutsc 6 1f (Cerr = SSLMoshSHAL . update(Bhash(tx, Gserverfondon)) !« @)

0 sslRecoreCalionts « 628 goto '0“; =

P AN sage 629 3 A -

> (@ ssiertiiessageh ,i,- if (‘(:):; miﬂw.m«mu. &signedfarans)) !« @) o

> wmse o goto fail; .x-—- Apple, we need to talk

» (8 ssBatdfagsh 0 637 Coden soovachasie SSI LFinal(BhashCtx, ShashOut)) 1« @) -

> (4 ssCenc goto foil; Carrest siaten:  Analyze
» 2 wWChamgeCipher .« . .

> 1 ssKipherSpecs.C err = sslRowerify(ctx,
T awcsmseat Static code analysis wins! Ctx->peerfubiey,

»  ssiComtentc
¥ gy ssilContexth

> (@ ssiCrypenc @ Xocwork Issues 51 [0 Kocwerk Log Consale ) Progress » ¥Y~0o

» N wCnpeah
Fiter manched | of 4 dsues. Crouped by Diseciory, sorted by Description, then by Resource

» N ssDebg b

» |8 wOIgesLc Oesrotmn Tanonoemy Rescurce Lxaton Sewerity

» (N ss0gests h ¥ % JUsers/iedelstein/workapace [osx- 10.9/Sacurity- 55471 M0securty_wif

» [ ssMandshate < ) UNREACH CEN: Code i usreachable CandCor  mlfeybechanes 652 Warring (1)

N s undihake A

» 6 s angahaeel nish ¢
» 0 ashundihaketelio c
» o wWKepchain

P ssiepchain b

» or ssKaeyfachange ¢

Wrtabse Sonart bnsert 632 .0

Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's
product would have nabbed the "goto fail" bug.

(Credit: Klocwork)

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users
vulnerable to Internet attacks until the company finally fixed it Tuesday.

Featured Posts

Google unveils Androi

wearables
Internet & Media

Motorol:

powere(
Internet

0K, Gla:
inmy fa
Cutting E

Apple i
product
Apple

QUM iPad wit
m comeba
Apple
Most Popular

Giant 3l
house
6k Facel

Exclusiv

Doeschi
716 Twe

Google'

-‘ four can
N 771 Goc

Connect With CNET

Facebook
Like Us

.!- NRandla 4

15



Many Interesting Defects

... are on uncommon or difficult-to-exercise execution paths
 Thus itis hard to find them via testing

*Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

*\We want to learn about “all possible runs” of the program for
particular properties

* Without actually running the program!
e Bonus: we don't need test cases!



Static Analyses Often Focus On

*Defects that result from inconsistently following simple,
mechanical design rules

* Security: buffer overruns, input validation

« Memory safety: null pointers, initialized data
 Resource leaks: memory, OS resources

 API Protocols: device drivers, GUI frameworks
* Exceptions: arithmetic, library, user-defined

* Encapsulation: internal data, private functions
» Data races (again!): two threads, one variable



How And Where Should We Focus?

! L, = 3
e 1 ) " \ b’ g £
7 ; s 8% L 4L = 2
N I 7 P TS 5 - -
3 ' Ly A s 1 e ’
2 2

w4
et ) ] !
. i A A Y
. - - ™ ] '-“.l - ,‘
[ 1 5 A o )
; -£ 7 \’ ‘ ‘“' \\_J !
o ’ ) L]
L4 aA 321 HANDFORD
t‘ \ \
- 4 - e g LW

~
3 [g <
£ 58
p
.

4 -

18



Static Analysis - Abstractions!

eStatic analysis is the systematic examination of an abstraction
of program state space

e Static analyses do not execute the program!

*An abstraction is a selective representation of the program that
is simpler to analyze

* Abstractions have fewer states to explore

*Analyses check if a particular property holds

* Liveness: “some good thing eventually happens”
» Safety: “some bad thing never happens”



Syntactic Analysis Example

*Goal — Find every instance of this pattern:
public foo() {

logger.debug(“We have ” + conn + “connections.”);

¥

public foo() {

if (logger.inDebug()) {
logger.debug(“We have »” + conn + “connections.”);

¥
¥

* What could go wrong? First attempt:
grep logger\.debug -r source dir

20




Abstraction: Abstract Syntax Tree

*An AST is a tree representation of the syntactic
structure of source code

* Parsers convert concrete syntax into abstract syntax

*Records only semantically-relevant information

* Abstracts away |, etc.
Example: 5 + (2 + 3)

+

*AST captures program structure

21



Programs As Data

*“orep” approach: treat program as string

* AST approach: treat program as tree

*The notion of treating a program as data is fundamental
* Recall from 370: instructions are input to a CPU

* Writing different instructions causes different execution
|t relates to the notion of a Universal Turing Machine.

* Finite state controller and initial tape represented with a string
* Can be placed as tape input to another TM



Dataflow Analysis

eDataflow analysis is a technique for gathering information
about the possible set of values calculated at various
points in a program

* We first abstract the program to an AST or CFG

* We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

* We finally give rules for computing those abstract values
* Dataflow analyses take programs as input



Two Exemplar Analyses

*Definite Null Dereference
* “Whenever execution reaches *ptr at program location L, ptr
will be NULL”

ePotential Secure Information Leak

* “We read in a secret string at location L, but there is a possible
future public use of it”

WELL THERE'S YOUR
PROBLEM

24



Discussion

*These analyses are not trivial

*“Whenever execution reaches” — “all paths” — includes
paths around loops and through branches of conditionals

*We will use (global) dataflow analysis to learn about the
program

* Global = an analysis of the entire method body, not just one { block }

25



Analysis Example

*|s ptr always null when it is dereferenced?

ptr = new AVL() ;
if (B > 0)

/\

ptr

d} ‘X 2 * 3; ‘

\/

print (ptr->data) ;

26



Correctness

*To determine that a use of x is always null, we must
know this correctness condition:

On every path to the use of x,
the last assignment to xis x :=0 **

Test - I do Not BELIEVE iN LiNEaR WWEN IN DQUBT,
TIME. THERE IS No Past and DENY ALL TERMS
1. What important event tock futuRE: qLL S ONE, aNd Qostmmoug
place on December 16, 17737 EXiSTENCE IN tHE YEMPoRal SENSE }
i ILLUSORY. THis QUESHON, M
HEREFORE, 1S MEANINGLESS and A = =

MPOSSIBLE 1o INSwWER.




Analysis Example Revisited

*|s ptr always null when it is dereferenced?

ptr = new AVL() ;
if (B > 0)

ptr

0;

print (ptr->data) ;

28



Static Dataflow Analysis

Static dataflow analyses share several traits:
 Knowing a given property P (at particular program points)

* Proving P at any point requires knowledge of the entire
method body

 Property P is typically undecidable!

\ Word cannot edit the Unknown.

29



Undecidability of Program Properties

e Rice’s Theorem: Most interesting dynamic properties of
a program are undecidable:

* Does the program halt on all (some) inputs?
* This is called the halting problem

* |Is the result of a function F always positive?
* Assume we can answer this question precisely
* Oops: We can now solve the halting problem.

* Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

 Contradiction!



Undecidability of Program Properties

*So, if interesting properties are
out, what can we do?

*Syntactic properties are
decidable!

* e.g., How many occurrences of “x”
are there?

*Programs without looping are also
decidable!




Looping

*Almost every important program has a loop
* ...loop bound is based on user input

*An algorithm always terminates

*So a dataflow analysis algorithm must terminate even if
the input program loops (forever)

*But how to reason about all loop iterations?

 Suppose you dereference the null pointer on the 500" iteration
but we only analyze 499 iterations

* One source of imprecision

32



Conservative Program Analyses

*\We cannot tell for sure that ptr is always null
 So how can we carry out any sort of analysis?

|t is OK to be conservative. If the goal is to check
whether or not P is true, then (conservative)
analysis reports either

e Pis definitely true 8
» Don't know if P is true #0% | Truthiness

: 7 ; _T 6’:_’
- !i /
a ﬂ .

e,



Conservative Program Analyses

o[t is always correct to say “don’t know”
* We try to say don’t know as rarely as possible
*All program analyses are conservative

*Must think about your software engineering process
* Bug finding analysis for developers?
They hate “false positives”, so if we don't know, stay silent.

* Bug finding analysis for airplane autopilot?
Safety is critical, so if we don't know, give a warning.



Definitely Null Analysis (Quiz)

*|s ptr always null when it is dereferenced?

ptr = new AVL() ;
if (B > 0)

N\

ptr = 0;
if (B > 0)

N\

ptr = 0; X =2 *

foo

myAVL; | [ptr =

~

print (ptr->data) ;

0;

~.

print (ptr->data) ;

35



Definitely Null Analysis

ptr = new AVL() ; ptr = 0;
if (B > 0) if (B > 0)
foy = myAVL; | [ptr =

~.

Q\/

print (ptr->data) ; print(ptr->data);

0;

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptr is ptr :=0 **

36



Definitely Null Information

*\We can warn about definitely null pointers at any
point where ** holds

o ... by computing ** for a single variable ptr at all
program points

On every path to the use of ptr, the
last assignment to ptris ptr :=0 **



Definitely Null Analysis (Cont.)

*To define the problem, we associate one of the
following values with ptr at every program point

* Recall: abstraction and property

value interpretation

1 This statement is
(called Bottom) not reachable

C X = constant c

T Don’t know if X is a
(called Top) constant




Example

X :=3
B>O

Fill in these blanks

< X1 =T
< X2 =

e = X3

X5

i

v=o |

Recall: L = not reachable, ¢ = constant, T = don't know.

39



Example

Recall: L = not reachable, ¢ = constant, T = don't know.

40



Using Abstract Information

*Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or

not to issue a warning
* Simply inspect the x = ? associated with a statement using x
* |f xis the constant 0 at that point, issue a warning!

*Big question: how can an algorithm compute x = ?



The Idea

The analysis of a (complicated) program can be
expressed as a combination of simple rules relating the
change in information between adjacent statements

SMETIMES T FEEL LIE QUR || WELL, THOREAD SAYS, “SIMALIY,
LIFE HAS GOTTEN TOO QOMAL-| | SIMPLIFY.” MANBE WE NEED
CATED.. THAT WEVE ACUMAATED | | T DO THAT, —
MORE THAN KE RENLY NEED..
THAT WEVE ACCEPTED TOO MM\

47



Explanation

*The idea is to “push” or “transfer” information
from one statement to the next

*For each statement s, we compute information
about the value of x immediately before and after s

*C. (x,s) = value of x before s
*C_.(%,s) = value of x after s



Transfer Functions

*Define a transfer function that transfers information
from one statement to another

49



Rule 1

l(—X:Q
X .= C
l<—X=c

o Cout(x, X :=c)=c if cis aconstant

50



Rule 2

l(—X:J_
S
| —x- 1

* C (x,s)=L ifC (x,s)= L

out

Recall: L = "unreachable code”



Rule 3

| <x-1
x = f(...)
| <x-t

e C (x,x:=1(...)=T

out

This is a conservative approximation! It might be possible to
figure out that f(...) always returns 0, but we won't even try!

52



Rule 4

* Coilx,yi=.)=C (x,y:=..) ifx#y



The Other Half

*Rules 1-4 relate the in of a statement to the out of the
same statement

* they propagate information through a statement

*Now we need rules relating the out of one statement
to the in of the successor statement

* to propagate information forward along paths

*In the following rules, let statement s have immediate
predecessor statements p_,...,p_



Rule 5

X=?2 X=T
X =2 X = 2
\%X:T
S

*if C (x,p)=Tforsomei, thenC (x,s)=T



Rule 6

X=2?2 X-=d
X =c X = 9
\%X:T
S

if Coue(X, p;) =c and C,(x, p)=d and d#c ,thenC, (x,s)=T

56



Rule 7

X = X =c
X-Cl\l/le
<« X=¢
S

ifC_(x,p)=c or L foralli,thenC (x,s)=c

out



Rule 8

X =  x=1
X'wazl
< X=- 1
s

ifC_(x,p)=L foralli, thenC (x,s)=1



Static Analysis Algorithm
e For every entry s to the program, set
C (x,s)=T

SetC (x,s)=C_ (x,s) =L everywhere else

e Repeat until all points satisfy rules 1-8:

* Pick s not satisfying rules 1-8 and update using the
appropriate rule



\WMBGINE "TRUTH \S A SPHERE:

TUE SPUERE THE GPUERE
\S PLL \S ALV
Static and
Dataflow
Analysis

THE SPUERE
\S ALL

(two-part lecture)




“Static” means?

Programs are viewed as ?

Abstraction: what are special abstract values?



One-Slide Summary

eStatic analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

eDataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.

62



The Idea

The analysis of a (complicated) program can be
expressed as a combination of simple rules relating the
change in information between adjacent statements

SMETIMES T FEEL LIE QUR || WELL, THOREAD SAYS, “SIMALIY,
LIFE HAS GOTTEN TOO QOMAL-| | SIMPLIFY.” MANBE WE NEED
CATED.. THAT WEVE ACUMAATED | | T DO THAT, —
MORE THAN KE RENLY NEED..
THAT WEVE ACCEPTED TOO MM\

63



Explanation

*The idea is to “push” or “transfer” information
from one statement to the next

*For each statement s, we compute information
about the value of x immediately before and after s

*C. (x,s) = value of x before s
*C_.(%,s) = value of x after s



Transfer Functions

*Define a transfer function that transfers information
from one statement to another

65



Rule 1

l(—X:Q
X .= C
l<—X=c

o Cout(x, X :=c)=c if cis aconstant

66



Rule 2

l(—X:J_
S
| —x- 1

* C (x,s)=L ifC (x,s)= L

out

Recall: L = "unreachable code”



Rule 3

| <x-1
x = f(...)
| <x-t

e C (x,x:=1(...)=T

out

This is a conservative approximation! It might be possible to
figure out that f(...) always returns 0, but we won't even try!

68



Rule 4

* Coilx,yi=.)=C (x,y:=..) ifx#y



The Other Half

*Rules 1-4 relate the in of a statement to the out of the
same statement

* they propagate information through a statement

*Now we need rules relating the out of one statement
to the in of the successor statement

* to propagate information forward along paths

*In the following rules, let statement s have immediate
predecessor statements p_,...,p_



Rule 5

X=?2 X=T
X =2 X = 2
\%X:T
S

*if C (x,p)=Tforsomei, thenC (x,s)=T



Rule 6

X=2?2 X-=d
X =c X = 9
\%X:T
S

if Coue(X, p;) =c and C,(x, p)=d and d#c ,thenC, (x,s)=T

72



Rule 7

X = X =c
X-Cl\l/le
<« X=¢
S

ifC_(x,p)=c or L foralli,thenC (x,s)=c

out



Rule 8

X =  x=1
X'wazl
< X=- 1
s

ifC_(x,p)=L foralli, thenC (x,s)=1



Static Dataflow Analysis Algorithm

*For every entry s to the program, set C (x,s) =T
Set C (x,s)=C_ (x,s)= L1 everywhere else

* Repeat until all points satisfy rules 1-8:

* Pick s not satisfying rules 1-8 and update using the
appropriate rule



The Value L

*To understand why we need 1, look at a loop

X := 3 <« X1 =T

B>O
X4=3—>/

<« X3 =3
‘Y::Z-I-W‘ \

<« X2 =3

X5=3—\
A =2

A< B

Y :=
/
* X




The Value L

*To understand why we need 1, look at a loop

<« X1 =T
X =3
<« X2 =3
B>O0
«xszy

Y :=Z + W |

X5 =3—>

Y =

77




The Value L (Cont.)

*\We want all points to have values at all times during
the analysis; but with cycles, we cannot...

*Solution: assigning some initial value allows the
analysis to break cycles

*The initial value L means “we have not yet
analyzed control reaching this point”



Another Example: Analyze the value of X ...

X 1= 3 <« X1 =T
<« X2 =1
B>O
X4 =1 —>
/ < X3 = _1 -
‘Y'Z*W‘ X6 = 1

X5 = .L\A_ /

X7 = L— |

= 4

Y

X9

A< B

~— X8:= 1

79



Another Example: Analyze the value of X ... Must continue

X4 =XV

Y :=Z + W |

X :=3
B>0O

x6 = XXT

X5 = X\_ /

X7 = X—

X

X = 4

<« X1 =T
<« x2:=X3

until all rules
are satisfied !

N(j x3 X9=XT

A<B

-

T X8:=X4

80



Orderings

*\We can simplify the presentation of the analysis by
ordering the values

l < c¢c < T

*Making a picture with “lower” values drawn lower, we get

This is called a “lattice” \[//

81



Orderings (Cont.)

o T is the greatest value, L is the least

* All constants are in between and incomparable
» (with respect to this analysis)

eLet lub be the least-upper bound in this ordering
e cf. “least common ancestor” in Java/C++

*Rules 5-8 can be written using lub:
*C (x,s)=lub{C_ (x,p) | pisapredecessorofs }

82



Termination

*Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

*The use of lub explains why the algorithm terminates
- Values start as L and only increase

1 can change to a constant, and a constant to T
e Thus, C (x, s) can change at most twice

83



Number Crunching

*The algorithm is polynomial in program size:
Number of steps
= Number of C (....) values * 2
= (Number of program statements)? * 2



“Potential Secure Information Leak” Analysis

*Could sensitive information possibly reach an insecure use?

str := get password()
I£f B >0

‘str := sanitize(str) |/ \‘Y = 0

‘display (str) ‘

In this example, the password contents can potentially flow
into a public display (depending on the value of B)

90



Live and Dead

X =3
*The first value of x is dead (never
used) l

X =4
*The second value of x is live (may l
be used) Y :i= X

eLiveness is an important concept

 \We can generalize it to reason about
“potential secure information leaks”

91



Sensitive Information
*A variable x at statement s is a possible sensitive (high-security)
information leak if

 There exists a (“display”) statement s’ that uses x
* Thereis a path fromstos’

* That path has no intervening low-security assignment to x

Chronicle.com - Today's News =1

[+] Textbook Sales Drop, and University Presses Search for
Reasons Why

[+] Students Flock to Web Sites Offering Pirated Textbooks

m:r 1] |

92



Computing Potential Leaks

*\We can express high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

*In this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value

 We have abstracted away the value

*This time we will start at the public display of information
and work backwards



Secure Information Flow Rule 1

l < X = true

display (x)

<« X =72

\
H (X, s) = true if s displays x publicly

true means “the value in x at this point can potentially
be leaked”

94



Secure Information Flow Rule 2

l<e->(=fhke

X := sanitize (x)

H. (x, x := e) = false
(any subsequent use is safe)

95



Secure Information Flow Rule 3

*H (X, s) = Hout(x, s) if s does not refer to x

96



Secure Information Flow Rule 4

P

m= true

X=2?2 X=2?2 X=true X-=2

*H_..(x, p) = V{H. (x,s) | sasuccessor of p }

(if there is even one way to potentially have a leak, we potentially have a leak!)

97



Secure Information Flow Rule 5 (Bonus!)

l<—Y=a
X =Yy
l<—X=a

* H (y,x:=y)=H_ (X x:=y)

(To see why, imagine the next statement is display(x).
Do we care about y above?)

98



Algorithm
eletallH (...)=false initially

e Repeat process until all statements s satisfy
rules 1-4 :

e Pick s where one of 1-4 does not hold and
update using the appropriate rule



Secure Information Flow Example

X := passwd()
X := sanitize (X)
B >0

- H(XI) = false

FKX4)==fbkﬁé:://////"\\\\\\\k

Y := 2 + W|

< H(X2) = false

< H(X3) = false

‘Y S

O"e—FMXQ)=the

- H(X7) = false

FMX&):fhke\\t:>\\\\*k////////

<— H(X8) = false

display (X)
X := passwd()
A < B

-

-

— H(X9) = false

- H(X10) = f

<— H(X11) = false

100



Secure Information Flow Example

X := passwd()
X := sanitize (X)
B >0

- H(XI) = false

meq)::fak%é:://////"\\\\\\\\

Y := 2 + W|

FKX&):fhke\\t:>\\\\*k///////,

<«<— H(X8) = TRUE =«

< H(X2) = false

< H(X3) = false

‘Y S

O“*—FMXQ)=the

- H(X7) = false

display (X)
X := passwd()

A <B

-

-

— H(X9) = false

- H(X10) = f

Here
What else?

<— H(X11) = false

101



Secure Information Flow Example

X :=passwd() | H(X) = false
X := sanitize (X)
5 s o <« H(X) = TRUE

H(X) = TRUE /\ H(X) = TRUE

Y := 2 + W|

H(X) = TRUM H(X) = TRUE

<— H(X) = TRUE

‘Y .= 0 ‘ < H(X) = TRUE

display (X)
X := passwd()
A <B

-

>

— H(X) = TRUE
— H(X) = TR

<— H(X) = TRUE

102



Secure Information Flow Example
X := passwd()
No leak! — <7 HX

X := sanitize (X)

= false

FMX):z1Tuﬂ§‘;2>,//’//’\\\\\<:;\FKX)::

TRUE

Y := 2 + W| Y :=

0 ‘ < H(X) = TRUE

H(X) = TRUM H(X) =
< H(X) = TRUE

display (X) H(X) = TRUE
___— X := passwd() X) =
Leak! A<p T H=TR

TRUE

<— H(X) = TRUE

103



Termination

*A value can change from false to true, but not the other
way around

*Each value can change only once, so termination is
guaranteed

*Once the analysis is computed, it is simple to issue a
warning at a particular sensitive information point (if
right after it, the analysis says true)



Static Analysis Limitations

*\Where might a static analysis go “wrong”?

*Construct the shortest program that causes a static
analysis to get the “wrong” answer?

YOU KNOW THIS METAL I SPEND MOSTOF MY UFE | | BUT TODAY, THE PATTERN
RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | OF LIGHTS 1S AL WROMG!
UTTLE LIGHTS? THE PATTERN OF LIGHTS OH GOD! TRY
CHANGE HOWEVER I WANT. J PRESSING MORE

\ Ve, K sooNDs ITSNOT  BUTIONS!

\ HELPING!
ﬂ O A (
L J—
105




X = new AST()
v = identity(x)
derefy Report Error!

(False Positive)



Static Analysis

*You are asked to design a static analysis to detect bugs
related to file handles

» A file starts out closed. A call to open() makes it open; open()

may only be called on closed files. read() and write() may only
be called on open files. A call to close() makes a file closed,;
close may only be called on open files.

 Report if a file handle is potentially used incorrectly

*\What abstract information do you track?

*\What do your transfer functions look like?



Abstract Information

*\We will keep track of an abstract value for a given file
handle variable

*\/alues and Interpretations
T file handle state is unknown

1 haven't reached here yet
closed file handle is closed
open file handle is open

108



“Null Ptr” vs. “File Handles”

*Previously: “null ptr” *Now: “file handles”
l<—ptr=0 1<—f=closed
*ptr read (f)
Report
™~ Report \ Erf o:,

Y Error! Y

109



Rules: open

l - f = closed l <«— f=Toropen
open (f) open (£f)
< f = open ™ Report
Error!

110



Rules: close

l — f = open l < f: Tor' C/O.S‘ed
close (f) close (f)
- f - C/OS'ed \ Repor't

 / Y Error!

111



Rules: read/write

* only show read(f); write(f) is the same

1 < f =open
read (f)
< f = open
\J

l <~ f=T orclosed

read (f)

Y

™~ Report

Error!

112



Rules: Assighment

1<— f=a l<— f-a
g =t g =t
- f:a -— g=a

113



Rules: Multiple Possibilities

- f=0b

VAPS

\

~— f=T

<~ f=a
<« f=1

<~ f=-q




A Tricky Program

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);



start:
switch (a)
case 1: open(f);
read(f);
close(f);
goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);

close(f)

closed
1
1
start: open(f)
1 1
open(f) -
1
* write(f)
read(f) 1
| 1
close(f) read(f) 1
1
1
1
close(f) open(f)

117




closed

closed

closed
start: Closed open(f)
closed open
open(f) open
open open
write(f) close(f)
read(f) N \
open O
close(f) read(f) < closed
\%en
AN
\ 1
1

close(?)\

open(f)

118



closed

closed

closed
closed
start: open(f)
@)sed open
¢ open
open(f) open
open write(f) close(f)
read(f) \
open \OW”\
close(f) read(f . closed
pen
AN

119



closed

closed

close(f)

closed
start: Closed open(f)

closed open
open(f) T

Open write(f) T
read(f) T

open T
close(f) read(f)

T
T T
close(f) open(f)

120



closed

closed

close(f)

closed
start: closed open(f)
closed open
open(f) T
open : T
write(f)
read(f) T
open T
close(f) =edl]
T
T T
close(f) open(f)

121



Is There Really A Bug?

start:
switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);
do {
write(f) ;
if (b): read(f);
else: close(f);
} while (b)
open(f);
close(f);



Forward vs. Backward Analysis

*\We've seen two kinds of analysis:

*Definitely null (cf. constant propagation) is a forwards
analysis: information is pushed from inputs to outputs

*Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back
towards inputs



