
Static and
Dataflow
Analysis

(two-part lecture)

This week
(in person + remote)

Next Mon
(in person + remote)

Next Wed: Guest Lecture
(Zoom only)

Work on HW3!

Exam 1

Foo(ptr, x) {
if (x > 10) {

deref ptr
 }
}

3

Foo(ptr, x, y, z, ...) {
if (x > 10) {

deref ptr
 }
 ...
}

4

The Story So Far …

•Quality assurance is critical to software engineering.

•Testing is the most common dynamic approach to QA.
• But: race conditions, information flow, profiling …

•Code review and code inspection are common static
approaches to QA.

•Today: automated static analysis

5

One-Slide Summary

•Static analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

•Dataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.

6

by github copilot researchers

Two Fundamental Concepts

•Abstraction
• Capture semantically-relevant details
• Elide (hide) other details
• Handle “I don't know”: think about developers

8

Foo(ptr, x, y, z, ...) {
if (x > 10) {

deref ptr
 }
 ...
}

9

Two Fundamental Concepts

•Abstraction
• Capture semantically-relevant details
• Elide (hide) other details
• Handle “I don't know”: think about developers

•Programs As Data
• Programs are just trees, graphs or strings
• And we know how to analyze and manipulate those (e.g., visit every

node in a graph)

10

goto fail;

 Why care about static analysis?

11

“Unimportant” SSL (Secure Sockets Layer) Example
static OSStatus SSLVerifySignedServerKeyExchange(

SSLContext *ctx, bool isRsa,SSLBuffer signedParams,
uint8_t *signature,UInt16 signatureLen) {

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;}

12

How do you reason about
this program?

Linux Driver Example
/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head * get_free_buffer(struct
 stripe_head * sh,int b_size) {

 struct buffer_head *bh;
 unsigned long flags;
 save_flags(flags);
 cli(); // disables interrupts
 if ((bh = sh->buffer_pool) == NULL)
 return NULL;
 sh->buffer_pool = bh -> b_next;
 bh->b_size = b_size;
 restore_flags(flags); // enables interrupts
 return bh;

}
13

How do you reason
about this program?

Could We Have Found Them? (Testing? Manually?)

•How often would those bugs trigger?

•Linux example:
• What happens if you return from a device driver with interrupts disabled?
• Consider: that's just one function
… in a 2,000 LOC file

… in a 60,000 LOC module

… in the Linux kernel

•Some defects are very difficult to find via testing or manual
inspection

14

15

Many Interesting Defects

•… are on uncommon or difficult-to-exercise execution paths
• Thus it is hard to find them via testing

•Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

•We want to learn about “all possible runs” of the program for
particular properties
• Without actually running the program!
• Bonus: we don't need test cases!

16

Static Analyses Often Focus On

•Defects that result from inconsistently following simple,
mechanical design rules
• Security: buffer overruns, input validation
• Memory safety: null pointers, initialized data
• Resource leaks: memory, OS resources
• API Protocols: device drivers, GUI frameworks
• Exceptions: arithmetic, library, user-defined
• Encapsulation: internal data, private functions
• Data races (again!): two threads, one variable

17

How And Where Should We Focus?

18

Static Analysis - Abstractions!

•Static analysis is the systematic examination of an abstraction
of program state space
• Static analyses do not execute the program!

•An abstraction is a selective representation of the program that
is simpler to analyze
• Abstractions have fewer states to explore

•Analyses check if a particular property holds
• Liveness: “some good thing eventually happens”
• Safety: “some bad thing never happens”

19

Syntactic Analysis Example
•Goal – Find every instance of this pattern:

•What could go wrong? First attempt:
grep logger\.debug -r source_dir

20

public foo() {
 …
 logger.debug(“We have ” + conn + “connections.”);
}

public foo() {
 …
 if (logger.inDebug()) {
 logger.debug(“We have ” + conn + “connections.”);
 }
}

Abstraction: Abstract Syntax Tree

•An AST is a tree representation of the syntactic
structure of source code
• Parsers convert concrete syntax into abstract syntax

•Records only semantically-relevant information
• Abstracts away (, etc.

•AST captures program structure

21

+

5 +

2 3

Example: 5 + (2 + 3)

Programs As Data

•“grep” approach: treat program as string

•AST approach: treat program as tree

•The notion of treating a program as data is fundamental

•Recall from 370: instructions are input to a CPU

•Writing different instructions causes different execution

•It relates to the notion of a Universal Turing Machine.

•Finite state controller and initial tape represented with a string

• Can be placed as tape input to another TM
22

Dataflow Analysis

•Dataflow analysis is a technique for gathering information
about the possible set of values calculated at various
points in a program

• We first abstract the program to an AST or CFG

• We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

• We finally give rules for computing those abstract values
• Dataflow analyses take programs as input

23

Two Exemplar Analyses

•Definite Null Dereference
• “Whenever execution reaches *ptr at program location L, ptr

will be NULL”

•Potential Secure Information Leak
• “We read in a secret string at location L, but there is a possible

future public use of it”

24

Discussion

•These analyses are not trivial

•“Whenever execution reaches” → “all paths” → includes
paths around loops and through branches of conditionals

•We will use (global) dataflow analysis to learn about the
program

• Global = an analysis of the entire method body, not just one { block }

25

Analysis Example

•Is ptr always null when it is dereferenced?

26

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

Correctness

•To determine that a use of x is always null, we must
know this correctness condition:

On every path to the use of x,
the last assignment to x is x := 0 **

27

Analysis Example Revisited

•Is ptr always null when it is dereferenced?

28

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

Static Dataflow Analysis

•Static dataflow analyses share several traits:

• Knowing a given property P (at particular program points)

• Proving P at any point requires knowledge of the entire
method body

• Property P is typically undecidable!

29

Undecidability of Program Properties

•Rice’s Theorem: Most interesting dynamic properties of
a program are undecidable:
• Does the program halt on all (some) inputs?
• This is called the halting problem

• Is the result of a function F always positive?
• Assume we can answer this question precisely

• Oops: We can now solve the halting problem.

• Take function H and find out if it halts by testing function
F(x) = { H(x); return 1; } to see if it has a positive result

• Contradiction!

30

Undecidability of Program Properties

•So, if interesting properties are
out, what can we do?

•Syntactic properties are
decidable!

• e.g., How many occurrences of “x”
are there?

•Programs without looping are also
decidable!

31

Looping

•Almost every important program has a loop
• … loop bound is based on user input

•An algorithm always terminates

•So a dataflow analysis algorithm must terminate even if
the input program loops (forever)

•But how to reason about all loop iterations?
• Suppose you dereference the null pointer on the 500th iteration

but we only analyze 499 iterations

• One source of imprecision
32

Conservative Program Analyses

•We cannot tell for sure that ptr is always null
• So how can we carry out any sort of analysis?

•It is OK to be conservative. If the goal is to check
whether or not P is true, then (conservative)
analysis reports either
• P is definitely true

• Don’t know if P is true

33

Conservative Program Analyses

•It is always correct to say “don’t know”
• We try to say don’t know as rarely as possible

•All program analyses are conservative

•Must think about your software engineering process
• Bug finding analysis for developers?

They hate “false positives”, so if we don't know, stay silent.
• Bug finding analysis for airplane autopilot?

Safety is critical, so if we don't know, give a warning.

34

Definitely Null Analysis (Quiz)

•Is ptr always null when it is dereferenced?

35

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

Definitely Null Analysis

36

No, not always. Yes, always.
On every path to the use of ptr, the
last assignment to ptr is ptr := 0 **

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

Definitely Null Information

•We can warn about definitely null pointers at any
point where ** holds

• … by computing ** for a single variable ptr at all
program points

37

On every path to the use of ptr, the
last assignment to ptr is ptr := 0 **

Definitely Null Analysis (Cont.)

•To define the problem, we associate one of the
following values with ptr at every program point
• Recall: abstraction and property

38

Don’t know if X is a
constant

⊤
(called Top)

X = constant cc

This statement is
not reachable

⊥
(called Bottom)

interpretationvalue

39

Recall: ⊥ = not reachable, c = constant, ⊤ = don't know.

X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X

X1 = T
X2 =

X3 = X4 =

X5 =

X6 =
X7 =

X8 =

Example
Fill in these blanks

40

Recall: ⊥ = not reachable, c = constant, ⊤ = don't know.

X := 3
B > 0

Y := Z + W
X := 4

Y := 0

A := 2 * X

X1 = T
X2 = 3

X3 = 3X4 = 3

X5 = 3

X6 = 4
X7 = 3

X8 = T

Example

Using Abstract Information

•Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or
not to issue a warning

• Simply inspect the x = ? associated with a statement using x

• If x is the constant 0 at that point, issue a warning!

•Big question: how can an algorithm compute x = ?

46

The Idea

The analysis of a (complicated) program can be
expressed as a combination of simple rules relating the
change in information between adjacent statements

47

Explanation

•The idea is to “push” or “transfer” information
from one statement to the next

•For each statement s, we compute information
about the value of x immediately before and after s

•C
in

(x,s) = value of x before s

•C
out

(x,s) = value of x after s

48

Transfer Functions

•Define a transfer function that transfers information
from one statement to another

49

Rule 1

• C
out

(x, x := c) = c if c is a constant

50

x := c
X = ?

X = c

Rule 2

• C
out

(x, s) = ⊥ if C
in

(x, s) = ⊥

51

Recall: ⊥ = “unreachable code”

s

X = ⊥

X = ⊥

Rule 3

52

This is a conservative approximation! It might be possible to
figure out that f(...) always returns 0, but we won't even try!

x := f(…)

X = ?

X = T

• C
out

(x, x := f(…)) = T

Rule 4

53

y := ...

X = a

X = a

The Other Half

•Rules 1-4 relate the in of a statement to the out of the
same statement
• they propagate information through a statement

•Now we need rules relating the out of one statement
to the in of the successor statement
• to propagate information forward along paths

•In the following rules, let statement s have immediate
predecessor statements p

1
,…,p

n

54

Rule 5

•if C
out

(x, p
i
) = T for some i, then C

in
(x, s) = T

55

X = T

X = T

X = ?
X = ?

X = ?

s

Rule 6

56

X = d

X = T

X = ?
X = ?

X = c

s

Rule 7

57

X = c

X = c

X = ⊥
X =
⊥

X = c

s

if C
out

(x, p
i
) = c or ⊥ for all i, then C

in
(x, s) = c

Rule 8

58

X = ⊥

X = ⊥

X = ⊥
X =
⊥

X = ⊥

s

if C
out

(x, p
i
) = ⊥ for all i, then C

in
(x, s) = ⊥

Static Analysis Algorithm

•For every entry s to the program, set
C

in
(x, s) = T

•Set C
in

(x, s) = C
out

(x, s) = ⊥ everywhere else

•Repeat until all points satisfy rules 1-8:

• Pick s not satisfying rules 1-8 and update using the
appropriate rule

59

Static and
Dataflow
Analysis

(two-part lecture)

“Static” means?

61

Programs are viewed as ___?

Abstraction: what are special abstract values?

One-Slide Summary

•Static analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

•Dataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.

62

The Idea

The analysis of a (complicated) program can be
expressed as a combination of simple rules relating the
change in information between adjacent statements

63

Explanation

•The idea is to “push” or “transfer” information
from one statement to the next

•For each statement s, we compute information
about the value of x immediately before and after s

•C
in

(x,s) = value of x before s

•C
out

(x,s) = value of x after s

64

Transfer Functions

•Define a transfer function that transfers information
from one statement to another

65

Rule 1

• C
out

(x, x := c) = c if c is a constant

66

x := c
X = ?

X = c

Rule 2

• C
out

(x, s) = ⊥ if C
in

(x, s) = ⊥

67

Recall: ⊥ = “unreachable code”

s

X = ⊥

X = ⊥

Rule 3

68

This is a conservative approximation! It might be possible to
figure out that f(...) always returns 0, but we won't even try!

x := f(…)

X = ?

X = T

• C
out

(x, x := f(…)) = T

Rule 4

69

y := ...

X = a

X = a

The Other Half

•Rules 1-4 relate the in of a statement to the out of the
same statement
• they propagate information through a statement

•Now we need rules relating the out of one statement
to the in of the successor statement
• to propagate information forward along paths

•In the following rules, let statement s have immediate
predecessor statements p

1
,…,p

n

70

Rule 5

•if C
out

(x, p
i
) = T for some i, then C

in
(x, s) = T

71

X = T

X = T

X = ?
X = ?

X = ?

s

Rule 6

72

X = d

X = T

X = ?
X = ?

X = c

s

Rule 7

73

X = c

X = c

X = ⊥
X =
⊥

X = c

s

if C
out

(x, p
i
) = c or ⊥ for all i, then C

in
(x, s) = c

Rule 8

74

X = ⊥

X = ⊥

X = ⊥
X =
⊥

X = ⊥

s

if C
out

(x, p
i
) = ⊥ for all i, then C

in
(x, s) = ⊥

Static Dataflow Analysis Algorithm

•For every entry s to the program, set C
in

(x, s) = T

•Set C
in

(x, s) = C
out

(x, s) = ⊥ everywhere else

•Repeat until all points satisfy rules 1-8:

• Pick s not satisfying rules 1-8 and update using the
appropriate rule

75

The Value ⊥
•To understand why we need ⊥, look at a loop

76

X := 3
B > 0

X1 = T

X4 = 3

X2 = 3

X3 = 3

Y := Z + W
Y := 0

A := 2 * X
A < B

X5 = 3

The Value ⊥
•To understand why we need ⊥, look at a loop

77

X := 3
B > 0

X1 = T

X4 = 3

X2 = 3

X3 = 3

Y := Z + W
Y := 0

A := 2 * X
A < B

X5 = 3

X8 = ??

X9 = ??
X6 = ??

X7 = ??

The Value ⊥ (Cont.)

•We want all points to have values at all times during
the analysis; but with cycles, we cannot…

•Solution: assigning some initial value allows the
analysis to break cycles

•The initial value ⊥ means “we have not yet
analyzed control reaching this point”

78

79

X := 3
B > 0

Y := Z + W
Y := 0

X := 4
A < B

Another Example: Analyze the value of X …
X1 = T

X2 = ⊥

X3 = ⊥
X4 =⊥

X8 = ⊥

X5 = ⊥

X6 = ⊥

X7 = ⊥

X9 = ⊥

80

X := 3
B > 0

Y := Z + W
Y := 0

X := 4
A < B

Another Example: Analyze the value of X …
X1 = T

X2 = ⊥

X3 = ⊥
X4 =⊥

X8 = ⊥

X5 = ⊥

X6 = ⊥

X7 = ⊥

X9 = ⊥

33

3

3
3

3 4

T
T

T

Must continue
until all rules
are satisfied !

Orderings

•We can simplify the presentation of the analysis by
ordering the values

⊥ < c < T

•Making a picture with “lower” values drawn lower, we get

81

⊥

T

-1 0 1… …

This is called a “lattice”

Orderings (Cont.)

•T is the greatest value, ⊥ is the least
• All constants are in between and incomparable

• (with respect to this analysis)

•Let lub be the least-upper bound in this ordering
• cf. “least common ancestor” in Java/C++

•Rules 5-8 can be written using lub:

•C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }

82

Termination

•Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

•The use of lub explains why the algorithm terminates
• Values start as ⊥ and only increase

 ⊥ can change to a constant, and a constant to T
• Thus, C_(x, s) can change at most twice

83

Number Crunching

•The algorithm is polynomial in program size:

 Number of steps

= Number of C_(….) values * 2

= (Number of program statements)2 * 2

84

•Could sensitive information possibly reach an insecure use?

In this example, the password contents can potentially flow
into a public display (depending on the value of B)

“Potential Secure Information Leak” Analysis

90

str := get_password()

If B > 0

str := sanitize(str) Y := 0

display(str)

Live and Dead

•The first value of x is dead (never
used)

•The second value of x is live (may
be used)

•Liveness is an important concept
• We can generalize it to reason about

“potential secure information leaks”
91

X := 3

X := 4

Y := X

Sensitive Information

•A variable x at statement s is a possible sensitive (high-security)
information leak if

• There exists a (“display”) statement s’ that uses x

• There is a path from s to s’

• That path has no intervening low-security assignment to x

92

Computing Potential Leaks

•We can express high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

•In this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value
• We have abstracted away the value

•This time we will start at the public display of information
and work backwards

93

Secure Information Flow Rule 1

 H
in

(x, s) = true if s displays x publicly

true means “the value in x at this point can potentially
be leaked”

94

display(x)

X = true

X = ?

Secure Information Flow Rule 2

H
in

(x, x := e) = false

(any subsequent use is safe)

95

x := sanitize(x)

X = false

X = ?

Secure Information Flow Rule 3

• H
in

(x, s) = H
out

(x, s) if s does not refer to x

96

s

X = a

X = a

Secure Information Flow Rule 4

97

p

X = true

X = true

X = ?X = ?X = ?

Secure Information Flow Rule 5 (Bonus!)

• H
in

(y, x := y) = H
out

(x, x := y)

(To see why, imagine the next statement is display(x).
Do we care about y above?)

98

x := y

Y = a

X = a

Algorithm

•Let all H_(…) = false initially

•Repeat process until all statements s satisfy
rules 1-4 :

• Pick s where one of 1-4 does not hold and
update using the appropriate rule

99

Secure Information Flow Example

100

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X1) = false

H(X2) = false

H(X3) = false

H(X6) = false

H(X7) = false
H(X8) = false

H(X9) = false

H(X11) = false

H(X4) = false

H(X5) = false

H(X10) = false

Secure Information Flow Example

101

Here

What else?

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X1) = false

H(X2) = false

H(X3) = false

H(X7) = false
H(X8) = TRUE

H(X9) = false

H(X11) = false

H(X4) = false

H(X5) = false

H(X10) = false

H(X6) = false

Secure Information Flow Example

102

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

H(X) = false

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE
H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

display(X)

X := passwd()

A < B H(X) = TRUE

Secure Information Flow Example

103

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

H(X) = false

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE
H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

display(X)

X := passwd()

A < B H(X) = TRUE

No leak!

Leak!

Termination

•A value can change from false to true, but not the other
way around

•Each value can change only once, so termination is
guaranteed

•Once the analysis is computed, it is simple to issue a
warning at a particular sensitive information point (if
right after it, the analysis says true)

104

Static Analysis Limitations

•Where might a static analysis go “wrong”?

•Construct the shortest program that causes a static
analysis to get the “wrong” answer?

105

x = new AST()

y = identity(x)

deref y

106

Report Error!

(False Positive)

Static Analysis

•You are asked to design a static analysis to detect bugs
related to file handles
• A file starts out closed. A call to open() makes it open; open()

may only be called on closed files. read() and write() may only
be called on open files. A call to close() makes a file closed;
close may only be called on open files.

• Report if a file handle is potentially used incorrectly

•What abstract information do you track?

•What do your transfer functions look like?
107

Abstract Information

•

108

“Null Ptr” vs. “File Handles”

•Previously: “null ptr”

109

•Now: “file handles”

*ptr

ptr = 0

Report
Error!

read(f)

f = closed

Report
Error!

Rules: open

110

open(f)

f = closed

open(f)

f = T or open

Report
Error!

f = open

Rules: close

111

close(f)

f = open

close(f)

f = T or closed

Report
Error!

f = closed

Rules: read/write

• only show read(f); write(f) is the same

112

read(f)

f = open

Report
Error!

f = open

read(f)

Rules: Assignment

113

g := f

f = a

g = a

f = a

g := f

f = a

Rules: Multiple Possibilities

114

f = a

f = T

f = b

f = a

f = a

f = a

A Tricky Program
start:
switch (a)
 case 1: open(f); read(f); close(f); goto start
 default: open(f);
do {
 write(f) ;
 if (b): read(f);
 else: close(f);
} while (b)
open(f);
close(f);

115

117

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

start:
switch (a)
 case 1: open(f);
 read(f);
 close(f);
 goto start
 default: open(f);
do {
 write(f) ;
 if (b): read(f);
 else: close(f);
} while (b)
open(f);
close(f);

118

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open

closed

open

open

open

open

open

closed

closed

119

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed
closed

open

open
T

closed

open

open

open

open

open

closed

T

closed

T

120

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open
T

closed

open

T

T

T

T

T

T

closed

T

121

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open
T

closed

open

T

T

T

T

T

T

closed

T

Is There Really A Bug?
start:
switch (a)
 case 1: open(f); read(f); close(f); goto start
 default: open(f);
do {
 write(f) ;
 if (b): read(f);
 else: close(f);
} while (b)
open(f);
close(f);

122

Forward vs. Backward Analysis

•We’ve seen two kinds of analysis:

•Definitely null (cf. constant propagation) is a forwards
analysis: information is pushed from inputs to outputs

•Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back
towards inputs

123

