REMAINS OF AXIS PUB, SUDDEN MOUNTAINS, DIMENSION OF KNACKITUDE

/,EARN:N@ THE KNACK OF TRAVEL
BETWEEN LEVELS OF REALITY REQUIRES US
TO LOOK BEYOND OUR NATURE, THERE TO FIND

THE ULTIMATE TRUTH OF OUR UN-NATURE.
Jv/
. ' - 2

Test Inputs,
Oracles and “

NO,
YOU NEED 301
AS A PREREQL
ARE YOU AN

UNPERGRADT

I'M SORRY,
I THOUGHT THIS
WAS AN INTRO
CLASS?

SCENES From 3 mULLiverse @ aJus o4, 2010 amULE2rSe.com 2010 JONacHan ROSeNESrs. COMFLINES: JOn@Eamuleiverse.com

One-Slide Summary

Formally, a test case consists of an input (data), an
oracle (output), and a comparator.

Test inputs determine the behavior of the program.
High-coverage inputs can be generated
automatically through path enumeration, path
predicates and mathematical constraint solving.

Test oracles correspond to what the program should
do. Generating them is an expensive problem; it can
be done automatically through invariants and
mutation.

Test suite minimization finds the smallest subset of
tests that meet a coverage goal.

The Story So Far ...

» Testing is very expensive (e.g., 35% of total IT
spending).

» Test suite quality metrics support informed
comparisons between tests.

* But where do we get one test, much less many
to compare? ‘

Outline

e Test inputs
e Test input generation
e Test oracles

e Test oracle generation
e Test minimization

o “Kill it with Math” vs. “Humans Are Central”

What is a test?

* Formally, a test case has three components:
the test input (or data), the test oracle (or
expected output), and the comparator.

 Sometimes called the Oracle-Comparator model.

/prog < input > output ; diff -b output oracle

Comparator

* Many test cases use “must match exactly” as
the comparator

* But officially it could be more general

« Known random output, precision limits, embedded

dates, etc.

amazon.com Recommended for You

Amazon.com has new recommendations for you based on items you purchased or
told us you own.

A
Soogle lpps Google App:

L, E:

Google Apps Google Apps Googlepedia: The
Deciphered: Comp ite iIn Administrator Glee A Ultimate Google
the Cloud to Streamline Private-Label Web Resource (3rd Edition)

Your Desktop Workspace

Non-Trivial Comparator Example

» jsoup/internal/ConstrainablelnputStreamTest.java

(from Homework 2)

public void noLimitAfterFirstRead() throws IOException {
int buffersize = 5 * 1024;

string url = "http://direct.infohound.net/tools/large.html"”; // 280 K
BufferedInputStream inputStream = Jsoup.connect(url).execute() .bodystream();

assertTrue(inputStream constrainableInputStream);
constrainableInputStream stream = (ConstrainableInputStream) inputStream;

// simulates parse which does a 1imited read first
stream.mark (buffersize);

ByteBuffer firstBytes = stream.readToByteBuffer(buffersize);
byte[] array = firstBytes.array();

String firstText = string(array, "UTF-8");
assertTrue(firstText.startswith("<html><head><title>Large"));
asserteEquals(buffersize, array.length);

Test Data

 What are all the inputs to a test?

* Many programs (especially student programs) read
from a file or stdin ...

* But what else is “read in” by a program and may
influence its behavior? -

Test Inputs

User Input (e.g., GUI)

Environment Variables, Command-Line Args
Scheduler Interleavings

Data from the Filesystem

« User configuration, data files

Data from the Network

 Server and service responses

Microsoft Internet Explorer @

@ Internet Explorer cannot download 7-12_xp32_dd_55811.exe from 3248.e.akamai.net.

A system call that should never fail has failed.

Operating System Philosophy

» “Everything is a file.”

o After a few libraries and levels of indirection,
reading from the user’s keyboard boils down to
opening a special device file (e.g., /dev/ttyS0)
and reading from it

« Similarly with mouse clicks, GUlI commands, etc.

* Ultimately programs can only interact with the
outside world through system calls

e open, read, write, socket, fork, gettimeofday
* Those (plus OS scheduling, etc.) are the full inputs10

Test Input Generation

 We want to generate high quality tests
 Automatically!

» Using test suite metrics to prefer some tests

» Statement Coverage: visit every line
* Branch Coverage: visit every —true, —false
* Path Coverage: visit every path

11

Path Coverage

foo(a,b,c,d,e,f):
1f a < b: this

else:

that

1f ¢ < d: foo

else: bar

if e < £: baz

else:

quoz

 How many paths?

cif
a<b

P

this | ‘that |

12

Path Coverage

foo(a,b,c,d,e,f): 4
this | ‘that
1f a < b: this \“T//
else: that =
- . foo bar
i1f ¢ < d: foo S
else: bar o<
4 A
1f e < f£: baz ‘baz quoz

else: quoz

 There are 8 paths, but only 6 branch coverage
edges

13

Branch vs. Path

a<b

. . . this that

If you have N sequential (or serial) if- ..
statements ... ooy

There are 2N branch edges foo bar
* Which you could cover in 2 tests! it
e<f

* One always goes left, one always right A A

But there are 2" paths y W

* You need 2" tests to cover them

Path coverage subsumes branch coverage

14

Path Test Input Generation

» Consider generating test inputs
to cover a path

* If we could do that, branch, stmt,
etc., would be easy!

* Solve this problem with math

* A path predicate (or path
condition, or path constraint) is
a boolean formula over program
variables that is true when the
program executes the given path

15

» Consider the highlighted path

* a.k.a. “False, False, True”
* |Its path predicate is
ea>Db & ¢c >=d && e < £

* When the path predicate is true,
control flow follows the given

path

* So what should we do to make a
test input that covers this path?

Path Predicate Example

it
a<b
4o A

this | that |

\.“f

|
‘C<7d‘

4 A

foo bar

a4

‘baz quoz

16

Solving Systems of Equations

* Asatisfying assignment is a mapping from
variables to values that makes a predicate
true.

* One satisfying assignment for

a > b && c > d && e < £
e |s

a=5, b=4, c=3, d=2, e=1, £f=2
* Another Is

a=0, b=0, ¢c=0, d=0, e=0, £f=1

17

Producing Satisfying Assignments

* Ask Humans (HW1?)

* Labor-intensive, expensive, etc.

* Repeatedly guess randomly

* Works surprisingly well (when answers are not
sparse)

* Use an automated theorem prover

« cf. Wolfram, MatLab, Mathematica, etc.

* Works very well on restricted types of equations
(e.g., linear but not arbitrary polynomial, etc.)

18

Test Input Generation Plan

Consider generating high-branch-coverage
tests for a method ...

Enumerate “all” paths in the method
For each path, collect the path predicate

For each path predicate, solve it

* Asolution is a satisfying assighment of values to
input variables — those are your test input

* None found? Dead code, tough predicate, etc.

19

Enumerating Paths

 What could go wrong with enumerating paths
in a method?

PacE 5

DEPARTMENT COURSE DESCRIFTON PREREQS
— — - —

COMPUTER CPSC 432 | INTERMEDIATE COMPILER [CPSC Y32

SCIENCE DESIGN, WITH A FOcUS ON
DEPENDENCY RESOLUTION.
— — -

|

Enumerating Paths

 What could go wrong with enumerating paths
in a method?

* There could be infinitely many!
while a<b:

a=a-+1

return a

* One path corresponds to executing the loop
once, another to twice, another to three
times, etc.

21

Path Enumeration Approximations

» Typical Approximations

» Consider only acylic paths (corresponds to taking
each loop zero times or one time)

* Consider only taking each loop at most k times

 Enumerate paths breadth-first or depth-first and
stop after k paths have been enumerated

* (For more information, take a Programming
Languages, Compilers or Theory class)

22

Collecting Path Predicates

 Now we have a path through the
program

 What could go wrong with
collecting the path predicate?

[

LO-7

CosP="7

[So-?

(0] [o<
/l/[9 norma(opproach

is useless here.

Cif
a<b
4o A

‘this. (that

\“f

O
‘C<7d‘

4

foo bar

a4

‘baz quoz

23

Path Predicate

 The path predicate may not be expressible in
terms of the inputs we control

foo(a,b) :
strl = read from url (“abc.com”)
str2 = read from url (“xyz.com”)
i1f (strl == str2):
bar ()

* Suppose we want to exercise the path that
calls bar. One predicate is strl==str?2.

What do you assign to a and b?

24

Path Predicate Woes

» Typical solutions:

* “We don't care.”
* Collect up the path predicate as best you can

* Ask the solver to solve it in terms of the input
variables

If it can't

... either because the math is too hard

... Or because the variables are out of our control

 Then we don't generate a test input exercising that
path. Best effort.

25

Trivia: Worldwide Box Office

 |dentify the top-six grossing worldwide
cinematic franchise associated with:

* The most versatile substance on the planet, and
they used it to make a Frisbee. ($13.5B)

Do. Or do not. There is no try. (58.9B)
You'll be next Mudbloods! ($8.5B)
A martini. Shaken, not stirred. (57.1B)

Even the smallest person can change the course of
the world. (55.9B)

| live my life a quarter mile at a time. (5$5.1B)

Psychology: Memory

 Which factors make it more likely that you will
remember something that happened to you:

The memory was happy

The memory was calm

The memory was sad

ne memory was from long ago

Neé memory was recent

Psychology: Memory

* In three experiments involving hundreds of
participants, researchers found that “intensity
affects the properties of autobiographical
memories more so than does valence”

* Valence = positive or negative emotion

* |ntensity = strong or weak emotion

t
O
@)
C

o
©
>

|

Psychology: Memory

Satisfied
Content

Relaxed »
At ease,s Calm

Serene
* Sleepy
« | Ired

Pleased Happy

Glad
Delighted Excited

Aroused.
Astonished"”

_Droopy

Bored Sad, Mise
Gloomy Depr

JAlarmed
Afraid _
"Tense

«ANngry
« Frustrated

Annoyed
rable =

desad Distressed

- Intensity -

Emotional Intensity Predicts
Autobiographical Memory Experience

* “intensity affects the properties of autobiographical
memories more so than does valence ... these
intensity differences are not the result of a simple
retention difference, because the age of the memory
was also included in the analyses and it was less
influential than intensity or valence ... not only will
highly intense events tend to be remembered longer,
but they will also tend to be remembered with
greater vividness, a greater sense of recollection”

[JENNIFER M. TALARICO, KEVIN S. LABAR, and DAVID C. RUBIN. Memory &
Cognition, 2004, 32 (7) 1118-1132.]

Emotional Intensity Predicts
Autobiographical Memory Experience

 Implications for SE: When asked to evaluate
code are less likely to remember the times we
were “merely” satisfied (or bored). Instead we
will remember the times we were excited or

alarmed by bugs. Satisfied

Conte.rlt Pleased .Happy

Relaxed Calm| Glad”

Ateases | Delighted Excited

* Sleepy Aroused.
Tired Astonished”

JAlarmed

Droopy Afraid

" "Tense
Annoyeq .Angry

Bored Sad. Miserable = ~ «Frustrated
Gloomy" "De p'ressed Distressed

Test Data Generation

* One of the earliest approaches was DART
(Directed Automatic Random Testing)

* Their example program has three paths:

 False, True-False, True-True int f(int x, int y) {

. int z;
* Predicates: z =y,
if (j{ —— E)
2Ty && xi=z if (y == x + 10)
b ;
. z=y && x=z && y'=x+10 @00

e z=y && x=2z && y=x+10

* Participation: For each of those 3 predicates,
give 1 solution in terms of x and y. 3

Microsoft's Pex Tool

* Pex is a test input generation tool integrated
into Visual Studio

|t has special handling for pointers, is language-
independent, etc., but otherwise works just like

what we covered here
e Other tools (e.g., JCUTE for Java) exist

33

Does it Work?

Class Blocks|Block Coverage| Arcs|Arc Coverage
A (mostly stateless methods) | >300 95%|>400 90%
B (mostly stateless methods) | >100 97%(>200 94%
C (stateful) >200 767(>300 65%
D (parsing code) >500 81%|>800 73%
E (numerical algorithms) =400 71%|>600 67%
F (numerical algorithms >100 82%|>200 79%
G (numerical algorithms) >100 98%|>100 97%
H (numerical algorithms) >200 717%|>200 61%
[(numerical algorithms) >200 97%|>300 967

 Why are these MS Dot.Net classes anonymous?

 What are block and arc coverage?

34

So, did we win?

» We want to automatically generate test cases

 We have an approach that works well in
practice:

 Enumerate some paths

» Extract their path constraints

* Solve those path constraints

 What are we missing?

We Forgot Oracles!

 We know to generate test inputs
e e.g., “for high coverage, run f(1,0) and f(-5,-7)”

 But we don't know what the answer is
supposed to be when you do that!

* S0 we cannot tell if a program is passing or
failing.

* Well ... maybe we can still salvage something.
Thoughts?

36

Test Generation — Bug Finding

* |f your program crashes on that input —bad

* “This paper presents EXE, an effective bug-
finding tool that automatically generates
inputs that crash real code ... EXE works well
on real code, finding bugs along with inputs
that trigger them in: the BSD and Linux packet
filter implementations, the udhcpd DHCP
server, the pcre regular expression library, and
three Linux file systems.”

[Cadar et al. EXE: Automatically Generating Inputs of Death. CCS 2006.]

37

Big Problem

* In general, though, we're
going to need both the | 7 T
question and the answer! ADAMS

DOUGLAS.

* But don't panic yet ...

 No need to throw in the €T
towel ... ©w AND'E

_, The Cosmic Conclusion tothe Hitchhiker's Triogy! 3 /&
|5 - 7 - - i o

. b - by L~
p 1 ﬁi" : '.|-

Oracles

* “If Croesus goes to war he will destroy a great
empire.”

- Barbara-Gerden The Oracle at Delphi, on whether
Croesus should go to war against the Persians

* Oracles are tricky.

* Many believe that formally writing down what
a program should do is as hard as coding it.

* (We return to this topic later.)

39

The Oracle Problem

 The Oracle Problem is the difficulty and cost
of determining the correct test oracle (i.e.,
output) for a given input.

* “What should the program do?”

* |t is expensive both for humans and for
machines.

* An implicit oracle is one associated with the
language or architecture, rather than
program-specific semantics (e.g., “don't
segfault”, “don't loop forever?”).

40

Aside: Philosophy

» The difficulty here should not be surprising.

* Recall from Ethics that it is often easier to
make negative moral edicts (“Do not steal”)
than it is to elaborate positive ones (“Here is
what it means to be a generous person ...”)

e Similarly, it is much easier to make negative
program edicts (“Do not crash”) than it is to
elaborate positive ones (“Here is what it
means to be a good webserver ...”)

|dea: Use The Program

* |n this setting we do have the program
 We're trying to generate tests for it ...

* Perhaps the program itself can somehow tell
us what its correct behavior should be

 But how?

Insight: Competent Programmers

* We return to the assumption that the program
is mostly correct (where was this from?)

* If | run the program ten different times and
every time we have index == array_len - 1

... perhaps that is the test oracle we want:
assertEquals (index, array len-1);

 That is, “it should be true every time”

* An invariant is a predicate over program
expressions that is true on every execution.

» High-quality invariants can serve as test oracles

43

Learning Invariants

» We can learn (or infer) program invariants by
running the program many times and noting
what is always true of the output

e e.g., if we run sqrt() many times, we may learn

retval>=0
HOW DO THEY KNOW THE | [THEY DRIVE BIGGER AND | [THEN THEY WEIGH THE | [OH. T T DEAR. IF YOU
LOAD LIMIT ON BRIDGES, | | BIGRER TRUCKS OVER TWE. | | LAST TRUCK. AND SHOULDVE | DONT KNOW
BRIDGE UNTIL \T BREAKS REBUILD THE BRIDGE . THE ANSWER,
) _ ST TELL

Learning Invariants

» We can learn (or infer) program invariants by
running the program many times and noting
what is always true of the output

e e.g., if we run sqrt() many times, we may learn
retval>=0

* Simple implementation: start with a big list of
possible invariants (e.g., retval=0, retval=5,
retval>=0, etc.) and, on every run, cross off
those that are falsified

e Recall: by definition an invariant is true on all runs

45

Common vs. Correct

* In some sense, we are assuming that common
behavior (or behavior we can observe) is
correct behavior

* This is like learning the rules of English by
reading high school essays. What could go

wrong?

THAT'S UNPOSSIBLE

46

Bad Invariants

» Consider the following situations

* We test sqrt once, on sqrt(9), and learn the
invariant: retval==3

 We test findNode thousands of times, and
learn the invariant: pointer%4==0

47

Fixing This Mess

* The “sqrt == 3” issue can be partially
addressed with more random inputs

 The “ptr % 4 == 0” issue is more troubling
* |t is only coincidentally correct here
* (Why do we care? Hint: cost!)

 Competent Programmers: in general, every
line of code matters to correctness

48

The Chain of Reasoning

 Competent Programmers: in general, every
line of human-written code matters to human-
intended correctness

* S0 if an invariant or oracle captures human-
intended correctness, there must be at least
one line of code that ensures it

* S0 if | poke and mutate your programs, |
should be able to falsify the invariant!

 If | can't, that candidate invariant was coincidental
and not a product of the code you actually wrote!

49

Example

* Suppose we have
tested this on 1, [EEEECIENSHERSN

int 1 = 1, result = 1;

9’ 16’ 30 // Base cases
N (}(== 0 ¥ == l)
 Candidate return x:
Invariants: // staring from 1, try all numbers until
// 1*1 1s greater than or equal to x.
« retval < retval+1 : (result <= x) 4

1++;
result = 1 * 1;

e retval <=6

return 1 - 1;

e X >= retval*retval
* What do we do?

50

Example

* Suppose we have
; int floorsgft (int x) {
tested thison 1, |EEEEPZRNIIECES
9, 16, 30

// /Base cases

(}(::0 X == l)

 Candidate return x;
Invariants: // staring from 1, try all numbers until
// 1*1 1s greater than or equal to x.
* rebtvat<retvat+t 2 (result <= x) {

T+

* retval <=6 __result =1 * i; Ruled out by trying

return i - 1- more inputs (e.g., 81),
e X >=retval*retval § dropped!

St
* What do we do? -

51

EvoSuite

* This oracle-generation approach is
implemented in the EvoSuite tool

|t generates high-coverage unit tests for Java

|t is award-winning, takes first place in
competitions as recently as 2017, etc.

* You will get a chance to try it in Homework 2!

 EvoSuite is an instance of search-based
software engineering, a topic we'll return to at
the end of this course

52

An Embarrassment of Riches

* At this point, we may actually have too many

test cases

 Surprisingly, this is normal in industry: you almost
always have far too few or far too many!

» Recall Google optional reading from last week

* This is especially true when using automated
test generation tools

* Which many produce many tests but lower-quality

ones than
* A Dbig cost

numans would produce

broblem!
53

Test Suite Minimization

* Given a set of test cases and coverage
information for each one, the test suite
minimization problem is to find the minimal
number of test cases that still have the
maximum coverage.

 Example

 T1 covers lines 1,2,3
e T2 covers lines 2,3,4,5
T3 covers lines 1,2

T4 covers lines 1, 6
54

Revenge of CS Theory
* You can add in details like the tests have
different costs to run, but ignore that for now

* How hard is it to solve the test suite
minimization problem?

 What is a correct algorithm for it? Can we do
better?

IP I may, the real Agreed. BUE how did

= question is Who are these Ghis issue get into
people that can't Pind a game in
\under ten seconds? They're lazy,
is What they are. And it... £
it Makes Me Sidk. L

gplinter Cell: Pandora
. Tomorrow crashes if wou

\ spend more than ten seconds
N searching Por games

There was only

o\ [(oney in the budget; to test
\l it Por nine and a half

online. e

Questions?

« Homework 1b, 1c, 1d all due!

* They are viewed as much harder than 1a

12:27 AM ees 0.29KB/s .all 4G 152 ./ 3G 25% (C®
& Tweet
Richard
@zzaaho

Q: What is the best prefix for
global variables?
A://

2:11 AM - 21 Jan 19 - Twitter Web Client

209 Retweets 544 Likes

S () Q o< 56

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

