Introduction to Model Checking

Ali Movaghar

04/01/2024 Introduction to Model Checking



M Overview

UNIVERSITY OF
MICHIGAN

Basic concepts
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M Design and Validation

MICHIGAN

A design is a process of getting a (more detailed) realization from a
given specification.
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A Multi-Level Design

and Validation

An implementation can be viewed as the most detailed realization.
https://web.eecs.umich.edu/~movaghar/Taxanomy-Dependable-Computing-2004.pdf
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lllllllllll

- Design is a process of getting a
(more detailed) realization from a
given (higher-level) specification.

 The design of a complex system
may happen on many levels.

« The implementation may be
viewed as the lowest level of the
design.
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M Validation

lllllllllll

- Validation is a process of

ensuring that a realization

satisfies its specification.

- Validation is a process of
ensuring that a design is correct.

- Validation is mainly used in

system design and development.
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M Validation Methods

lllllllllll

\VValidation has three main
methods:

e Verification
 Evaluation
» Testing
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M Verification

lllllllllll

- Verification is a formal
mathematical method to
prove that a realization
satisfies its specification.
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M Evaluation

lllllllllll

- Evaluation is a method
for finding how well a
system behaves.
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- Testing is a method of
proving that a
realization does not
satisfy its specification.
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M Integrated Validation Methods

UNIVERSITY OF

« Testing, Verification,
and Evaluation are
usually complementary.
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M Methods for Evaluation

« Measurement
. Analytical Modeling
. Simulation Modeling
. Hybrid Modeling

11
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M So, whyv not test?

Testing only shows the
presence of bugs, not their
absence!

12
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M  Methods for Testin

UNIVERSITY OF
MICHIGAN

Unit Testing: Validates that individual components
or units of the software work correctly.

* Integration Testing: Ensures that different modules
or services used by your application work well
together.

* Functional Testing: Checks the software against the
functional requirements/specifications.

* System Testing: Verifies that the complete and
integrated software system meets the specified

requirements.
13
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M Methods for Testing (Cont’d)

UNIVERSITY OF
MICHIGAN

Stress Testing: Determines the robustness of

software by testing beyond the limits of normal

operation.

* Performance Testing: Checks if the software
performs well under their expected workload.

* Usability Testing: Evaluate the user-friendliness and
ease of use of the software.

* Security Testing: Identifies vulnerabilities within the

software and ensures that the data and resources

are protected.
14
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MM Methods for Testing (Cont’d)

UNIVERSITY OF
MICHIGAN

* Acceptance Testing: Confirms that the software is
ready for delivery by validating it against business
requirements.

* Regression Testing: Ensures that new code
changes do not adversely affect existing
functionalities.

* Mutation testing: This helps ensure that the test
cases are effective at finding potential bugs and
that they cover the necessary aspects of the
software's functionality.

15
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M What are formal methods?

MICHIGAN

* Techniques for analyzing systems,
based on some mathematics.

e This does not mean that the user must
be a mathematician.

* Some of the work is done informally,
due to complexity.

16
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M Formal Methods

UNIVERSITY OF
MICHIGAN

Mathematically-based techniques for

describing properties of systems
« Provide framework for
* Specifying systems (and thus the notion of correctness)

* Developing systems
* Verifying correctness

 Of implementation w.r.t. the specification

* Equivalence of different implementations
« Reasoning is based on logic
* Amenable to machine analysis and manipulation

* In principle, can verify everything is true in the system!
* Given enough time, skill, and patience
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M Formal Verification

Formal verification seeks to
establish a mathematical
proof that a system works
correctly.

18
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M Formal Verification (Cont’'d)

UNIVERSITY OF
MICHIGAN

A formal approach provides:

 Asystem model (language) to describe
the system,

* A specification model (language) to
describe the correctness requirement,

* An analysis technique to verify that the
system meets its specifications.

19
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M Why aren’t FMs used more:

UNIVERSITY OF
MICHIGAN

\

“Formal methods can

revolutionize
development!” “Formal methods are difficult,
) expensive, not widely useful
and for safety-critical systems
only”

N\ %
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M ... and one more problem

UNIVERSITY OF
MICHIGAN

Need to know what to build (specification) before you start
building

System w
{ engineering (\

nalysis W<(\-
\)k Analy ( Design J\

\)k Coding _ W(\
“water-fall” model N Testing W(\

U I. t- ' \)LMaintenance }
nrealisticC!

U May need to discover what to build iteratively

U Software changes all the time
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M Formal Methods “Light”

UNIVERSITY OF
MICHIGAN

Partial application of formal methods
* only parts of systems are specified

Emphasis on analysis of some properties
* security, fairness, deadlock freedom, rather than

complete verification
Debugging rather than assurance
Automation
Most successful lightweight technique:
Model-Checking
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M Methods of Verification

lllllllllll

There are two major methods for
verification:

 Deductive Method

* Model Checking
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M Deductive Method

lllllllllll

* In the deductive method, the
problem is formulated as proving
a theorem in a mathematical
proof system.
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M Model Checking

lllllllllll

* |n the method of model checking,
the behavior of the system is
checked algorithmically through
an exhaustive search of all
reachable states.
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M Reactive Systems

lllllllllll

A reactive system is a system whose role is
to maintain an ongoing interaction with its
environment.

« The family of reactive systems includes

most of the classes of systems whose

correct and dependable construction is to be
considered to be particularly challenging,
including concurrent and real-time systems,
embedded and process control systems, and
operating systems.
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Reactive Systems Properties

lllllllllll

Reactive systems have usually
the following properties:
* Concurrency

 Timeliness
* High performance, dependability,
and security requirements
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M System Models

UNIVERSITY OF
MICHIGAN

« Transition Systems (Automata)

« Process Algebras and their extensions

« Communicating Sequential Processes (CSP)
« Calculus of Communicating Systems (CCS)
« Actors

« Petri Nets and their extensions

« Deep Neural Networks (DNNSs)

 Markov Decision Processes (MDPs)

« Other more recent models

https://web.eecs.umich.edu/~movaghar/pi-calculus.pdf
https://web.eecs.umich.edu/~movaghar/cspbook.pdf
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M Specification Models

lllllllllll

Temporal Logics and their Extensions
« Linear Temporal Logic (LTL)

« Computational Tree Logic (CTL)
« CTL*

 PCTL

« PCTL*

« CSL
 HyperLTL and HyperCTL*
« Other more recent models
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M Popular Tools

lllllllllll

NuSMV
PRISM
SPIN

Dainy
Many Tools for DNNs
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M Motivation for Model Checking

UNIVERSITY OF
MICHIGAN

Safety-critical systems

« Airplanes

« Space shuttles

« Railways
 Expensive mistakes

« Chip design

« Critical software
« Want to guarantee safe
behavior over
 unbounded time

https://web.eecs.umich.edu/~movaghar/CACM Article-
2008.PDF
https://web.eecs.umich.edu/~movaghar/CACM Article-
2010.PDF

Smart vehicles 3!
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M Motivation for Model Checking

UNIVERSITY OF

MICHIGAN

Toyota Recalls 1.9 Million Prius Hybrids

Over SOﬁware Flaw <msblast.exe> (the primary executable of the exploit) [ )

I just want to say LOVE YOU SAN!! Ariane disaster, 1996

billy gates why do you make this possible ? Stop $500 million software failure
By Jeremy Hsu making money and fix your software!!

Posted 12 Feb 2014 21:55 GHIT NS
32 tftp -1 %s GET $s
%d.%d.%d.%d

$i.%1.%1.%1

Bugs cost Time, Money, | Estimated worst-case worm cost:
Lives, ... 1 > $50 hillion

~

 FDIV error, 1994
| $500 million

L]

- |
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M What is Model Checking?

UNIVERSITY OF

MICHIGAN

An approach for verifying the temporal

behavior of a system

* Primarily fully-automated (“push-button™
techniques

* Model

« Representation of the system

=3
* Need to decide the right level of ‘
granularity

» Specification Model Checker
« High-level desired property of syst¢

« Considers infinite sequences
Proof
Example optional
33

« PSPACE-complete for FSMs y
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M Model Checking

UNIVERSITY OF
MICHIGAN

Automated formal verification for finite-state models

Finite-state
System model
s i Result
— \I v X
! f Y
Model check_er
— e.g. SMV, Spin
J
O@ —3 ¢ fail Counter-
) —> example
System Temporal logic oo
require- specification
ments
33
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M Overview

UNIVERSITY OF
MICHIGAN

Probabilistic Model Checking

35
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UNIVERSITY OF
MICHIGAN

Probabilistic model
System e.g. Markov chain

0.5 $0.4

—

@ Pco.1 [Ofail ] | o

Q

° 4

SYStem  propabilistic temporal

requIre=|ogic specification
ments e.g. PCTL, CSL, LTL

})_ﬁ

Probabilistic A

Probabilistic Model Checking

Automatic verification of systems with probabilistic behaviour

— Result

v X

Quantitative

model checker

e.g. PRISM
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M Why Probability?

UNIVERSITY OF
MICHIGAN

e Some systems are inherently probabilistic...

e Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

e Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes
« CSMA protocol, 802.11 Wireless LAN
— Random choice of waiting time
« IEEE1394 Firewire (root contention), Bluetooth (device discovery)

— Random choice over a set of possible addresses
« IPv4 Zeroconf dynamic configuration (link-local addressing)

— Randomised algorithms for anonymity, contract signing, ...

37
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M Why Probability? (Cont’d)

UNIVERSITY OF
MICHIGAN

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

38
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M Why Probability? (Cont’d)

UNIVERSITY OF
MICHIGAN

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

To model biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

39
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M Verifying Probabilistic Systems

UNIVERSITY OF
MICHIGAN

e We are not just interested in correctness

e We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

e Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?

40
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M Probabilistic Models

UNIVERSITY OF
MICHIGAN

Markov Decision Process (MDP)
— probabilistic and nondeterministic behavior
— the semantic base for extended models below

Probabilistic Timed Automata (PTA)
— extend MDPs with clocks to express timed behavior

Probabilistic Hybrid Automata (PHA)
— extend clocks of PTAs to more general continuous variables
— often described by differential equations

Stochastic Activity Networks (SAN)

Hybrid Stochastic Activity Networks (HSAN)
41
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UNIVERSITY OF
MICHIGAN

Nondeterminism

Some aspects of a system may not be probabilistic and should not
be modeled probabilistically; for example:
e Concurrency - scheduling of parallel components

—e.g. randomized distributed algorithms - multiple
probabilistic processes operating asynchronously
e Underspecification - unknown model parameters

—e.g. a probabilistic communication protocol designed for
message propagation delays of between d,i, and dpayx
e Unknown environments

—e.g. probabilistic security protocols - unknown adversary
e Decision-making and control

—e.g. optimal resource management and optimal control

42
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UNIVERSITY OF
MICHIGAN

Overview

Markov decision processes (MDPs)

43
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UNIVERSITY OF
MICHIGAN

Markov Decision Processes

e Formally, an MDP M is a tuple (S,sint,Steps,L) where:
— S is a finite set of states (“state space”)
— Sinit € S is the initial state
— Steps : S — 2ActxDist(S) js the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions overthe set S

—L:S — 2APjs alabelling with atomic propositions

e Notes:
— Steps(s) is always non-empty,
i.e. no deadlocks

— the use of actions to label
distributions is optional

44
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M Simple MDP Example

UNIVERSITY OF
MICHIGAN

e Simple communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

E {fail}

1 wait {succ}

45
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UNIVERSITY OF
MICHIGAN

Modeling MDPs

¢ Guarded Commands modeling language
— simple, textual, state-based language

— based on Reactive Modules basic components:
modules, variables, and commands

e Modules:
— components of the system being modelled
— a module represents a single MDP

module example

endmodule

46

04/01/2024 Introduction to Model Checking



M Modeling MDPs

UNIVERSITY OF
MICHIGAN

¢ Guarded Commands modeling language
— simple, textual, state-based language

— based on Reactive Modules basic components: modules,
variables, and commands

e Variables:
— finite-domain (bounded integer ranges or Booleans)

— local or global — anyone can read, only the owner can
modify

— variable valuation = state of the MDP

module example

s ¢ [0..3] 1init O;

endmodule
47
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M Modeling MDPs

UNIVERSITY OF
MICHIGAN

¢ Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules

— basic components: modules, variables, and
commands

e Commands:
— describe the transitions between the states

[act] exp -> p;: asgni; &asgniz & ... + ... + pyasgny & ... ;
— > > < > > < >
action guard probability update probability update

module example

s ¢ [0..3] 1init O0;
[send] (s=1) =-> 0.01: (s'=2) + 0.99: (s'=3);

endmodule 48
04/01/2024 Introduction to Model Checking



UNIVERSITY OF
MICHIGAN

Simple MDP Example

e Simple communication
protocol

module example
s ¢ [0..3] init 0;

[start] (s=0) => (s'=1);
[wait] (s=1) —-> true;
[ send] (s=1) -=> 0.01: (s'"=2) + 0.99: (s'=3);
[restart] (s=2) =-> (s'=0);
[stop] (s =3) —> true;
endmodule

49
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M Example - Parallel Composition

UNIVERSITY OF
MICHIGAN

Asynchronous parallel
composition of two
3 -state DTMCs

Action labels
omitted here

1
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M Example - Parallel Composition

UNIVERSITY OF

MICHIGAN
Asynchronous parallel

composition of two
3 -state DTMCs

module threestate

s ¢ [0..2] 1init O;
[] s=0 -> (s'=1);
[] s=1 -=> 0.5: (s'"=s5-1)
+ 0.5: (s'"=s+1);
[] s>1 -> true;
endmodule
module copy = threestate[s=t] endmodule
system Default parallel composition
threestate || copy on matching action labels
endsystem — can be omitted 58
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UNIVERSITY OF
MICHIGAN

Paths and Probabilities

e A (finite or infinite) path through an MDP
— is a sequence of states and action/distribution pairs
— e.g. sp(ao,Mo)s1(ai,M1)sz...
— such that (a;,p;) € Steps(s;) and pi(si+1) > 0 for all i=0

— represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

— note that a path resolves both types of choices:
nondeterministic and probabilistic

e To consider the probability of some behaviour of the MDP

— first need to resolve the nondeterministic choices
— ...which results in a Markov chain (DTMC)
— ...for which we can define a probability measure over paths

52
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M Overview

UNIVERSITY OF
MICHIGAN

Probabilistic Model Checking

Markov decision processes (MDPs)

Adversaries

PCTL

PCTL model checking

Costs and rewards

53
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M Adversaries

UNIVERSITY OF
MICHIGAN

e An adversary resolves nondeterministic choice in an MDP

7\

— also known as “schedulers”, “strategies” or “policies”

e Formally:
— an adversary A of an MDP M is a function mapping every finite

path w= sg(ai,M1)S1...Sn to an element of Steps(sy)

e For each A can define a probability measure PrAs over paths
— constructed through an infinite state Markov chain (DTMC)
— states of the DTMC are the finite paths of A starting in state s
— the initial state is s (the path starting in s of length 0)
— PA(w,w)=N(s) if w'= w(a, u)s and A(w)=(a,H)
— PAy(w,w")=0 otherwise

54
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UNIVERSITY OF
MICHIGAN

Adversaries - Examples

e Considerthe simple MDP below
— note that s; is the only state for which |Steps(s)| > 1
—i.e. sy is the only state for which an adversary makes a choice

— let up and pc denote the probability distributions associated
with actions b and c in state s;

e Adversary A;
— picks action c the first time

A1(soS1)=(Cc,Hc)
e Adversary A;
— picks action b the first time, then c

— Ay(s0S1)=(b,Mb),A2(S0S151)=(C,Hc),
A>(S0S150S1)=(C,Hc)

55
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UNIVERSITY OF
MICHIGAN

Adversaries - Examples

e Fragment of DTMC for adversary A,
— A picks action c the first time

56

04/01/2024 Introduction to Model Checking



UNIVERSITY OF
MICHIGAN

Adversaries - Examples

e Fragment of DTMC for adversary A,
— A, picks action b, then ¢
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UNIVERSITY OF
MICHIGAN

Memoryless Adversaries

e Memoryless adversaries always pick same choice in a state
— also known as: positional, Markov, simple
— formally, for adversary A:
— A(so(a1,M1)S1...Sn) depends only on s,
— resulting DTMC can be mapped to a |S|-state DTMC

e From previous example:
— adversary A; (picks cin s;) is memoryless, A, is not

58
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M Overview

UNIVERSITY OF
MICHIGAN
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UNIVERSITY OF
MICHIGAN

e Temporal logic for describing properties of MDPs
— PCTL = Probabilistic Computation Tree Logic

e Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

e Example
—send — Psg.95 [ true U=10 deliver ]

— "if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

60
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M PCTL Syntax

UNIVERSITY OF
MICHIGAN

e PCTL

syntax: ‘//////? ................................................

— @ i=true|la|@AQ | =Q | Pyp[Ww] (state

formulas)
—y =00 | oUke | oUQ (path
T ................ S T formulas)
..... R — “bounded ezl
next” : S i iountil
until

.......................................................

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~€ {<,>,5,2}, ke N

e A PCTL formula is always a state formula
— path formulas only occur inside the P operator

61
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M PCTL Semantics for MDPs

MICHIGAN

e PCTL formulas interpreted over states of an MDP
— S E ¢ denotes @ is “true in state s” or “satisfied in state s”

e Semantics of (non-probabilistic) state formulas:
— for a state s of the MDP (S, sinit,P,L):

—SEa - aekL(s)
—SEQ@1 AP - sE@; and sE @2
—SEAQ - sEQ isfalse
e Examples
— S, F tails

— s> E heads A —init

62
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M PCTL Semantics for MDPs

UNIVERSITY OF
MICHIGAN

e Semantics of path formulas:
— fora path w = s¢s155... in the MDP:

—wE=EOQP - S1EQ
—wE Q@ Usk@, - 3Fisksuchthats; = @, and Vj<i, sjE @1
—wEQ1 U@ - 3k=0suchthat w = @1 Usk @,

e Some examples of satisfying paths:
—O ANt iy o {tails) {tis}

— —tails U heads
{init} { {heads}{heads}
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M PCTL Semantics for MDPs

UNIVERSITY OF
MICHIGAN

e Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary A

—s k= P., [ @ ] means “the probability, from state s, that y is true
for an outgoing path satisfies ~p for all adversaries A”

—formally seP, [y ] & ProbA(s, @) ~ p for all adversaries A
where ProbA(s, @) = PrAis {w € PathA(s) | ®w E p }

U ProbA(s, w) ~p

64
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M Minimum and Maximum Probabilities

UNIVERSITY OF
MICHIGAN

Letting:
— Pmax(S, W) = supa ProbA(s, y)
— Pmin(S, Y) = infa ProbA(s, y)

e \We have:
—ifre {Z>}thenseEPup, [W] - Pmin(S, W) ~p
—ifrve{<,<},thensEP,,[W] - pmax(S, W) ~p

e Model checking P.p[ ¢ ] reduces to the computation over all
adversaries of either:

— the minimum probability of y holding
— the maximum probability of ¢ holding
e Crucial result for model checking PCTL on MDPs

— memoryless adversaries suffice, i.e. there are always
memoryless adversaries Amnin and Amax for which:

— ProbAmin(s, W) = pmin(s, W) and ProbAmaX(s, W) = pmax(S, ¥)
65
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M Overview

UNIVERSITY OF
MICHIGAN

PCTL model checking

66
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UNIVERSITY OF
MICHIGAN

PCTL Model Checking

Algorithm for PCTL model checking
e inputs: MDP M=(S,sinit,Steps,L), PCTL formula ¢
—output: Sat(p)={s eS| skE @ }= set of states satisfying @

What does it mean for an MDP D to satisfy a formula ¢?
— sometimes, want to checkthats =@ v s€S, i.e. Sat(p) =S
— sometimes, just want to know if s, E @, i.e. if siyic € Sat()

Sometimes, focus on quantitative results
— e.g. compute the result of Pmax=7? [0 error ]
— e.g. compute result of Pmax=? [¢ =k error ] for 0<k<100

67
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UNIVERSITY OF
MICHIGAN

PCTL Model Checking for MDPs

e Basic algorithm proceeds by induction on parse tree of @
— example: @ = (=fail A try) — Psg.95 [ =fail U succ ]

e Forthe non-probabilistic operators:
— Sat(true) = S
—Sat(a)={seS|ael(s)}

— Sat(~@) =S\ Sat(yp) / \

_ Sat(q)l A (Pz) = Sat(q)l) N Sat((pz) A I:)>0.95 [ - U ]

e FortheP.,[ y ] operator = @ 5 é@

— need to compute the
probabilities Prob(s, p) © ©
for all statess e S fail fail

— focus here on the “until”
case: Y = ¢1 U P

—

68
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M Quantitative Properties

UNIVERSITY OF
MICHIGAN

e For PCTL properties with P as the outermost operator
— quantitative form (two types): Pmin_, [ ¢ ] and Pmax-,[ @ ]

—i.e. "what is the minimum/maximum probability (over all
adversaries) that path formula y is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of
Pmin(S, W) OF Pmax(s, Y) anyway

— useful to spot patterns/trends !
0.8
e Example: CSMA/CD protocol goe
— “min/max probability Loa . _
that a message is sent oz|; - -average
within the deadline” T 1400 T:(;rgunlsoo
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Some Real PCTL Examples

e Byzantine agreement protocol
— Pmin.; [ ¢ (agreement A rounds<2) ]

— “what is the minimum probability that agreement is reached
within two rounds?”

e CSMA/CD communication protocol
— Pmax_-, [ ¢ collisions=k ]
— “what is the maximum probability of k collisions?”

e Self-stabilisation protocols
— Pmin-, [0 ststable ]

— “what is the minimum probability of reaching a stable state
within k steps?”
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e Computation of probabilities pmin(s, @1 U @2) foralls e S
e Firstidentify all states where the probability is 1 or O
— “precomputation” algorithms, yielding sets Syes, Sno
e Then compute (min) probabilities for remaining states
(S?)
— either: solve linear programming problem
— or: approximate with an iterative solution method

Example: Py, [0 a ]

P>p [ true U a ]
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e Identify all states where pmin(s, @1 U ¢3)is1or0
— Sves = Sat(P>1[ @1 U @3 ]),5m = Sat(= Pso[ @1 U @2 ])
e Two graph-based precomputation algorithms:

— algorithm Prob1A computes Syes
« for all adversaries the probability of satisfying ¢; U ¢, is 1

— algorithm ProbOE computes Sno
« there exists an adversary for which the probability is 0

Sves = Sat(Ps1 [0 a ])

Example:

Sno = Sat(—=Pso[0a])
72
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e Probabilities pmin(s, @1 U ¢3) for remaining states in the
setS? =S\ (Svesu Sno) can be obtained as the unique
solution of the following linear programming (LP) problem:

maximize Zses? Xs subject to the constraints :

Xs < D H(S') Xe + D H(s")

s'eS? s' eSYes

for allse S? and for all (a,n) € Steps(s)

e Simple case of a more general problem known as the
stochastic shortest path problem

e This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut
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Example - PCTL Until (LP)

Let Xi = pPmin(Si, ¢ @)
Sves; x,=1, Sno: x3=0
For S? = {Xo,X1} :
Maximise Xo+X; subject to constraints:
. Xo £ Xq
. X0 £ 0.25-x9g + 0.5
« X1 <0.1:xg+ 0.5:x; + 0.4
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M Example - PCTL Until (LP)
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Let Xi = pmin(Si, ¢ @) SYes: x,=1,
Sno: x3=0 For S? = {Xo, X1} :
Maximise Xo+X; subject to constraints:
. Xo £ X1
. X0 < 2/3

.« X1 <0.2:X9 + 0.8

X1

A

- Xg < 2/3
1 X1 < 0.2:Xg

+ 0.8

0 1 0 2/3 1 o 1
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M Example - PCTL Until (LP)
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04/01/2024

Let X; = pmin(si, F @) Sves:
Xo=1, Sno; x3=0
For S? = {Xq, X1} :
Maximise Xo+X; subject to constraints:
. Xo £ X1
« X0 < 2/3
. X1 £0.2:X0 + 0.8

X1
.}
0.8 [ Solution: (X, X1)
{ max/ = (2/3, 14/15)
Xo O T T T T > X0
0 2/3 1 76
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M Example - PCTL Until (LP)
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Let Xi = pmin(Si, ¢ @)
Sves; x,=1, S"o: x3=0
For S? = {Xo, X1} :
Maximise Xo+X; subject to constraints:
. Xo £ X1
. X0 < 2/3
. X1 £0.2:x9 + 0.8

X1
1} &
 os]
X; < 0.2:Xo + 0.8 _ ma% \
0 memoryless
11— adversaries
Xg < Xy — |
0 2/3 1
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Method 2 — Value Iteration

e For probabilities pmin(s, ¢1 U @>) it can be shown

that:
— Pmin(S, @1 U @2) = limp_e Xs(M where:

-

1 ifs € Sves
0 ifs e S™
0

ifseS’andn=0

\
: : (1) .
MiN(; esteps(s) [Zp(s ) X, ’ J ifseS’andn>0

'eS

"

e This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently
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Example - PCTL Until (Value Iteration)

Compute: pmin(si, ¢ @)
Syes = {XZ}I Sno ={X3}l S? = {XOI Xl}
[ x(n),x (n),x (n),x (n) ]

0 1 2 3

n=0: [0,0,1,0]

n=1 [ min(0,0.25:0+0.5),
0.1:0+0.5:0+0.4,1, 0]
=10,04,1,0]
n=2 [ min(0.4,0.25:0+0.5),
: 0.1-0+0.5-0.4+0.4, 1,0 ]
=[10.4,0.6,1,0]
n=3:
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my_ ) _ () ()
[Xo /X1 ;X2 ;X3 ']

[ 0.000000, 0.000000, 1,0]
[ 0.000000, 0.400000, 1,0]
[ 0.400000, 0.600000, 1,0]
[ 0.600000, 0.740000, 1,0]]
[ 0.650000, 0.830000, 1,0]
[ 0.662500, 0.880000, 1, 0]
[ 0.665625, 0.906250, 1, 0]
[ 0.666406, 0.919688, 1, 0]
[ 0.666602, 0.926484, 1, 0]
[ 0.666650, 0.929902, 1, 0]

3 3333333 33
Il

I
©ONDUDRWNEO

n=20 [0.666667, 0.933332,1,0]

n=21 [0.666667,0.933332,1,0]

~ [2/3,14/15,1,0] g,
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Example - Value Iteration + LP

04/01/2024

2/3

v

3 2 33333333
o NIIURWNREQ

>
Il

N
Q

n=21:

(n), (n)_ (n)_ (n)
[XO X1 X2 X3 ]

[ 0.000000, 0.000000, 1,0]
[ 0.000000, 0.400000, 1,0]
[ 0.400000, 0.600000, 1,0]
[ 0.600000, 0.740000, 1, 0]
[ 0.650000, 0.830000, 1,0]
[ 0.662500, 0.880000, 1, 0]
[ 0.665625, 0.906250, 1, 0]
[ 0.666406, 0.919688, 1, 0]
[ 0.666602, 0.926484, 1, 0]
[ 0.666650, 0.929902, 1, 0]

[ 0.666667, 0.933332, 1, 0 ]
[ 0.666667, 0.933332, 1, 0 ]

~ [2/3, 14/15,1,0]
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PCTL Model Checking - Summary

e Computation of set Sat(®) for MDP M and PCTL formula ®
— recursive descent of parse tree
— combination of graph algorithms, numerical computation

e Probabilistic operator P:
— O @ : one matrix-vector multiplication, O(|S|2)
— ®; Usk ®5 : k matrix-vector multiplications, O(k|S|?2)

— ®; U O, : linear programming problem, polynomial in
|S| (assuming use of linear programming)

o Complexity:
— linear in |®| and polynomial in |S|
— S is states in MDP, assume |Steps(s)| is constant
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Costs and rewards
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M Costs and Rewards
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e We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

e Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

o Costs? or rewards?
— mathematically, no distinction between rewards and costs

— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

— we will consistently use the terminology “rewards” regardless
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Reward-Based Properties

Properties of MDPs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period
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Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

expected
. reward is ~r |

S
Il
-

2
©
™
€<
e
po)
2
2
~™
—
1l
n
| I— )
o)
?
| |
@)
IA
IA
| I—
o)
2
2
| |
<>
S
| M—)

— wherer € Ryg, ~€ {<,>,5,2}, kEN

e R..[ - ] means “the expected value of - satisfies ~r"
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e Instantaneous: R..[ I=k]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

e Cumulative: R [ C=sk]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

e Reachability: R [¢ ¢ ]

— “the expected reward cumulated before reaching a state
satisfying ¢ is ~r”
— e.g. “the expected time for the algorithm to terminate”
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e Instantaneous: R..[ I=k]
— similar to the computation of bounded until probabilities
— solution of recursive equations

e Cumulative: R [ C=sk]
— extension of bounded until computation
— solution of recursive equations

e Reachability: R [0 ¢ ]
— similar to the case for P operator and until
— graph-based precomputation (identify co - reward states)
— then linear programming problem (or value iteration)
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Basic concepts

— Design and Validation
— Formal Verification
— Model Checking
e Probabilistic Model Checking
e Markov Decision Processes (MDPs)
— probabilistic as well as nondeterministic behaviors
— to model concurrency, underspecification, ...
— easy to model using guarded commands
e Adversaries Resolve Nondeterminism in an MDP
— induce a probability space over paths
— consider minimum/maximum probabilities over all adversaries
*  Property Specifications
— probabilistic extensions of temporal logic, e.g. PCTL
— also: the expected value of costs/rewards
— quantify overall adversaries
e Model Checking Algorithms

— covered two basic techniques for MDPs: linear programming
or value iteration 89
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