
Introduction to Model Checking

Ali Movaghar

Introduction to Model Checking04/01/2024

1

Overview

2

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

Design and Validation
A design is a process of getting a (more detailed) realization from a
given specification.

 An implementation can be viewed as the most detailed realization.
https://web.eecs.umich.edu/~movaghar/Taxanomy-Dependable-Computing-2004.pdf

Specification

Realization1
Realization2

Realization3

Realization4

Implementation

A Multi-Level Design

and Validation

04/01/2024 Introduction to Model Checking
3

https://web.eecs.umich.edu/~movaghar/Taxanomy-Dependable-Computing-2004.pdf

• Design is a process of getting a
(more detailed) realization from a
given (higher-level) specification.

• The design of a complex system
may happen on many levels.

• The implementation may be
viewed as the lowest level of the
design.

04/01/2024 Introduction to Model Checking 4

Design

• Validation is a process of
ensuring that a realization
satisfies its specification.

• Validation is a process of
ensuring that a design is correct.

• Validation is mainly used in
system design and development.

04/01/2024 Introduction to Model Checking 5

Validation

Validation Methods
Validation has three main
methods:

• Verification
• Evaluation
• Testing

04/01/2024 Introduction to Model Checking 6

Verification

• Verification is a formal
mathematical method to
prove that a realization
satisfies its specification.

04/01/2024 Introduction to Model Checking 7

Evaluation

• Evaluation is a method
for finding how well a
system behaves.

04/01/2024 Introduction to Model Checking 8

Testing

• Testing is a method of
proving that a
realization does not
satisfy its specification.

04/01/2024 Introduction to Model Checking 9

Integrated Validation Methods

• Testing, Verification,
and Evaluation are
usually complementary.

04/01/2024 Introduction to Model Checking 10

Methods for Evaluation

n Measurement
n Analytical Modeling
n Simulation Modeling
n Hybrid Modeling

Introduction to Model Checking04/01/2024

11

So, why not test?

Testing only shows the
presence of bugs, not their
absence!

Introduction to Model Checking04/01/2024

12

Methods for Testing
• Unit Testing: Validates that individual components

or units of the software work correctly.
• Integration Testing: Ensures that different modules

or services used by your application work well
together.

• Functional Testing: Checks the software against the
functional requirements/specifications.

• System Testing: Verifies that the complete and
integrated software system meets the specified
requirements.

Introduction to Model Checking04/01/2024

13

Methods for Testing (Cont’d)

• Stress Testing: Determines the robustness of
software by testing beyond the limits of normal
operation.

• Performance Testing: Checks if the software
performs well under their expected workload.

• Usability Testing: Evaluate the user-friendliness and
ease of use of the software.

• Security Testing: Identifies vulnerabilities within the
software and ensures that the data and resources
are protected.

Introduction to Model Checking04/01/2024

14

Methods for Testing (Cont’d)
• Acceptance Testing: Confirms that the software is

ready for delivery by validating it against business
requirements.

• Regression Testing: Ensures that new code
changes do not adversely affect existing
functionalities.

• Mutation testing: This helps ensure that the test
cases are effective at finding potential bugs and
that they cover the necessary aspects of the
software's functionality.

Introduction to Model Checking04/01/2024

15

What are formal methods?

• Techniques for analyzing systems,
based on some mathematics.

• This does not mean that the user must
be a mathematician.

• Some of the work is done informally,
due to complexity.

Introduction to Model Checking04/01/2024

16

Formal Methods
• Mathematically-based techniques for

describing properties of systems
• Provide framework for
• Specifying systems (and thus the notion of correctness)
• Developing systems
• Verifying correctness
• Of implementation w.r.t. the specification
• Equivalence of different implementations

• Reasoning is based on logic
• Amenable to machine analysis and manipulation
• In principle, can verify everything is true in the system!
• Given enough time, skill, and patience

Introduction to Model Checking04/01/2024

17

Formal Verification

Formal verification seeks to
establish a mathematical
proof that a system works
correctly.

Introduction to Model Checking04/01/2024

18

Formal Verification (Cont’d)

A formal approach provides:
• A system model (language) to describe

the system,
• A specification model (language) to

describe the correctness requirement,
• An analysis technique to verify that the

system meets its specifications.

Introduction to Model Checking04/01/2024

19

Why aren’t FMs used more?

“Formal methods can
revolutionize
development!” “Formal methods are difficult,

expensive, not widely useful
and for safety-critical systems
only”

04/01/2024 Introduction to Model Checking 20

… and one more problem

Need to know what to build (specification) before you start
building

Unrealistic!
ÄMay need to discover what to build iteratively
ÄSoftware changes all the time

System
engineering

Analysis
Design

Coding

Testing

Maintenance
“water-fall” model

04/01/2024 Introduction to Model Checking 21

Formal Methods “Light”

• Partial application of formal methods
• only parts of systems are specified

• Emphasis on analysis of some properties
• security, fairness, deadlock freedom, rather than

complete verification
• Debugging rather than assurance
• Automation

Most successful lightweight technique:
Model-Checking

04/01/2024 Introduction to Model Checking 22

Methods of Verification

There are two major methods for
verification:

• Deductive Method

• Model Checking
04/01/2024 Introduction to Model Checking 23

Deductive Method
• In the deductive method, the

problem is formulated as proving
a theorem in a mathematical
proof system.

04/01/2024 Introduction to Model Checking 24

Model Checking
• In the method of model checking,

the behavior of the system is
checked algorithmically through
an exhaustive search of all
reachable states.

04/01/2024 Introduction to Model Checking 25

Reactive Systems
• A reactive system is a system whose role is

to maintain an ongoing interaction with its
environment.

• The family of reactive systems includes
most of the classes of systems whose
correct and dependable construction is to be
considered to be particularly challenging,
including concurrent and real-time systems,
embedded and process control systems, and
operating systems.
04/01/2024 Introduction to Model Checking 26

Reactive Systems Properties

Reactive systems have usually
the following properties:
• Concurrency
• Timeliness
• High performance, dependability,

and security requirements

04/01/2024 Introduction to Model Checking 27

System Models
• Transition Systems (Automata)
• Process Algebras and their extensions
• Communicating Sequential Processes (CSP)
• Calculus of Communicating Systems (CCS)
• Actors
• Petri Nets and their extensions
• Deep Neural Networks (DNNs)
• Markov Decision Processes (MDPs)
• Other more recent models

https://web.eecs.umich.edu/~movaghar/pi-calculus.pdf
https://web.eecs.umich.edu/~movaghar/cspbook.pdf

04/01/2024 Introduction to Model Checking 28

https://web.eecs.umich.edu/~movaghar/pi-calculus.pdf
https://web.eecs.umich.edu/~movaghar/cspbook.pdf

Specification Models

• Temporal Logics and their Extensions
• Linear Temporal Logic (LTL)
• Computational Tree Logic (CTL)
• CTL*
• PCTL
• PCTL*
• CSL
• HyperLTL and HyperCTL*
• Other more recent models

04/01/2024 Introduction to Model Checking 29

Popular Tools

NuSMV
PRISM
SPIN
Dafny
Many Tools for DNNs

04/01/2024 Introduction to Model Checking 30

Motivation for Model Checking

• Safety-critical systems
• Airplanes
• Space shuttles
• Railways

• Expensive mistakes
• Chip design
• Critical software

• Want to guarantee safe
behavior over

• unbounded time
https://web.eecs.umich.edu/~movaghar/CACM_Article-
2008.PDF
https://web.eecs.umich.edu/~movaghar/CACM_Article-
2010.PDF

Smart vehicles
04/01/2024 Introduction to Model Checking

31

https://web.eecs.umich.edu/~movaghar/CACM_Article-2008.PDF
https://web.eecs.umich.edu/~movaghar/CACM_Article-2008.PDF
https://web.eecs.umich.edu/~movaghar/CACM_Article-2010.PDF
https://web.eecs.umich.edu/~movaghar/CACM_Article-2010.PDF

Motivation for Model Checking

S. A. Seshia 13

Ariane disaster, 1996
$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost:
> $50 billion

Bugs cost Time, Money,
Lives, …

S. A. Seshia 13

Ariane disaster, 1996
$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost:
> $50 billion

Bugs cost Time, Money,
Lives, …

S. A. Seshia 13

Ariane disaster, 1996
$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost:
> $50 billion

Bugs cost Time, Money,
Lives, …

04/01/2024 Introduction to Model Checking
32

32

What is Model Checking?
• An approach for verifying the temporal

behavior of a system
• Primarily fully-automated (“push-button”)

techniques
• Model

• Representation of the system
• Need to decide the right level of

granularity
• Specification

• High-level desired property of system
• Considers infinite sequences

• PSPACE-complete for FSMs

What is Model Checking?

▪ An approach for verifying the temporal behavior of a system

▪ Primarily fully-automated (“push-button”) techniques

▪ Model
▪ Representation of the system

▪ Need to decide the right level of granularity

▪ Specification
▪ High-level desired property of system

▪ Considers infinite sequences

▪ PSPACE-complete for FSMs

Model Checker

Model Spec

Counter-
Example

Proof
(optional)

04/01/2024 Introduction to Model Checking
33

Model Checking
Automated formal verification for finite-state models

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬∃ à fail

Model checker
e.g. SMV, Spin

3

04/01/2024 Introduction to Model Checking

34

Overview

35

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

Probabilistic Model Checking
Automatic verification of systems with probabilistic behaviour

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
exampleSystem

require-
ments

P<0.1 [à fail]

0.5

0.1

0.4

Probabilistic
model checker
e.g. PRISM

36

04/01/2024 Introduction to Model Checking

Why Probability?

37

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes

• CSMAprotocol, 802.11Wireless LAN
— Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)
— Randomised algorithms for anonymity, contract signing, …

04/01/2024 Introduction to Model Checking

Why Probability? (Cont’d)

38

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

• Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

04/01/2024 Introduction to Model Checking

Why Probability? (Cont’d)

39

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

• To model biological processes
— reactions occurring between large numbers of molecules are

naturally modelled in a stochastic fashion

04/01/2024 Introduction to Model Checking

Verifying Probabilistic Systems

40

• We are not just interested in correctness

• We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more…

• Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?

04/01/2024 Introduction to Model Checking

Probabilistic Models

41

• Markov Decision Process (MDP)
— probabilistic and nondeterministic behavior
— the semantic base for extended models below

• Probabilistic Timed Automata (PTA)
— extend MDPs with clocks to express timed behavior

• Probabilistic Hybrid Automata (PHA)
— extend clocks of PTAs to more general continuous variables
— often described by differential equations

• Stochastic Activity Networks (SAN)

• Hybrid Stochastic Activity Networks (HSAN)

04/01/2024 Introduction to Model Checking

Nondeterminism

42

• Some aspects of a system may not be probabilistic and should not
be modeled probabilistically; for example:

• Concurrency - scheduling of parallel components
—e.g. randomized distributed algorithms - multiple

probabilistic processes operating asynchronously
• Underspecification - unknown model parameters

—e.g. a probabilistic communication protocol designed for
message propagation delays of between dmin and dmax

• Unknown environments
—e.g. probabilistic security protocols - unknown adversary

• Decision-making and control
—e.g. optimal resource management and optimal control

04/01/202
4

Introduction to Model Checking

Overview

43

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

Markov Decision Processes
• Formally, an MDP M is a tuple (S,sinit,Steps,L) where:

— S is a finite set of states (“state space”)
— sinit ∈ S is the initial state
— Steps : S → 2Act×Dist(S) is the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

— L : S → 2AP is a labelling with atomic propositions

• Notes:
— Steps(s) is always non-empty,

i.e. no deadlocks
— the use of actions to label

distributions is optional

s

44

1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a

04/01/2024 Introduction to Model Checking

Simple MDP Example

s

45

1s0

s2

s3

0.01

0.99

1

1

1

{fail}

{succ}

{try}
start

1
send

stop

wait

• Simple communication protocol
— after one step, process starts trying to send a message
— then, a nondeterministic choice between: (a) waiting a step

because the channel is unready; (b) sending the message
— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

04/01/2024 Introduction to Model Checking

Modeling MDPs

46

• Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules basic components:

modules, variables, and commands

• Modules:
— components of the system being modelled
— a module represents a single MDP

module example

...

endmodule

04/01/2024 Introduction to Model Checking

Modeling MDPs

47

• Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules basic components: modules,

variables, and commands

• Variables:
— finite-domain (bounded integer ranges or Booleans)
— local or global – anyone can read, only the owner can

modify
— variable valuation = state of the MDP

module example

s : [0..3] init 0;

...

endmodule

04/01/2024 Introduction to Model Checking

Modeling MDPs

• Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules
— basic components: modules, variables, and

commands

• Commands:
— describe the transitions between the states

+ 0.99: (s' = 3);

module example

s : [0..3] init 0;

...
[send] (s = 1) -> 0.01: (s' = 2)
...

endmodule

[act] exp -> p1: asgn11 & asgn12 & ... + ...

action guard probability update

+ pn: asgnn1 & ... ;

probability update

04/01/2024 Introduction to Model Checking
48

Simple MDP Example

s1s0

s2

s3

0.01

0.99
1

1

1

{fail}

{try}
start send

stop

restart

module example

s : [0..3] init 0;
1 wait {succ}

[start] (s = 0) -> (s' = 1);
[wait] (s = 1) -> true;
[send] (s = 1) -> 0.01: (s' = 2) + 0.99: (s' = 3);
[restart] (s = 2) -> (s' = 0);
[stop] (s = 3) -> true;

endmodule

• Simple communication
protocol

04/01/2024 Introduction to Model Checking
49

Example - Parallel Composition

1 1 1

s0 s t s t s t0 2

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2 1

1

1

1

1 0.51 0.5
1

0.5

1

0 0 0.5 0 1

1

0.5

0.5

0.5

0.5

1

0.5
0.5

1 0.5

s1 t0

0.5 0.5 0.5

1 0.5

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here

04/01/2024 Introduction to Model Checking
50

18

Example - Parallel Composition
Asynchronous parallel
composition of two

3-state DTMCs

1 1 1

s0 S0 t0

s1

s2

t0 t1 t2 1

1

1

1

0.51 0.5
1

1

0.5

1

1
0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

1 0.5 1 0.5

0.5

1

S0 t1 S0 t2

S1 t0

S t2 0

0.5 S1 t1

0.5 S t2 1

S1 t2

S t2 2

module threestate

s : [0..2] init 0;

[] s = 0 -> (s' = 1);
[] s = 1 -> 0.5: (s' = s - 1)

+ 0.5: (s' = s + 1);
[] s > 1 -> true;

threestate[s = t] endmodule

|| copy

endmodule

module copy =

system
threestate

endsystem

Default parallel composition
on matching action labels
– can be omitted

04/01/2024 Introduction to Model Checking

51

Paths and Probabilities

52

• A (finite or infinite) path through an MDP
— is a sequence of states and action/distribution pairs
— e.g. s0(a0,µ0)s1(a1,µ1)s2…
— such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0
— represents an execution (i.e. one possible behaviour) of the

system which the MDP is modelling
— note that a path resolves both types of choices:

nondeterministic and probabilistic

• To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices
— …which results in a Markov chain (DTMC)
— …for which we can define a probability measure over paths

04/01/2024 Introduction to Model Checking

Overview

53

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

Adversaries

54

• An adversary resolves nondeterministic choice in an MDP
— also known as “schedulers”, “strategies” or “policies”

• Formally:
— an adversary A of an MDP M is a function mapping every finite

path ω= s0(a1,µ1)s1...sn to an element of Steps(sn)

• For each A can define a probability measure PrAs over paths
— constructed through an infinite state Markov chain (DTMC)
— states of the DTMC are the finite paths of A starting in state s
— the initial state is s (the path starting in s of length 0)
—PAs(ω,ω’)=µ(s) if ω’= ω(a, µ)s and A(ω)=(a,µ)
—PAs(ω,ω’)=0 otherwise

04/01/2024 Introduction to Model Checking

Adversaries - Examples

— picks action c the first time
—
A1(s0s1)=(c,µc)

• Adversary A2
— picks action b the first time, then c
— A2(s0s1)=(b,µb),A2(s0s1s1)=(c,µc),

A2(s0s1s0s1)=(c,µc)

s1

55

s2

s30.5

1
1

• Consider the simple MDP below
— note that s1 is the only state for which |Steps(s)| > 1
— i.e. s1 is the only state for which an adversary makes a choice
— let µb and µc denote the probability distributions associated

with actions b and c in state s1

{heads}
• Adversary A1

{tails}

{init} a 1
s0
0.7b
0.3

c
0.5 a

a

04/01/2024 Introduction to Model Checking

Adversaries - Examples

s1

s2

s3

0.5

0.5

1
1

• Fragment of DTMC for adversary A1
— A1 picks action c the first time

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a

s0
1 s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s3

0.5

s0s1
0.5

56

1

1

04/01/2024 Introduction to Model Checking

Adversaries - Examples
• Fragment of DTMC for adversary A2

— A2 picks action b, then c

s1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a

s0
1

s0s1s0s1s2

s0s1s0s1s3
s0s1

0.7
s0s1s0

s0s1s1
0.3

1
0.5

s0s1s0s1
0.5

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

57

04/01/2024 Introduction to Model Checking

Memoryless Adversaries

s1
s30.5

1
1

{tails}

{init} a 1
s0
0.7b
0.3

c
0.5 a

a
s1

s2 s2

s30.5

1
1

• Memoryless adversaries always pick same choice in a state
— also known as: positional, Markov, simple
— formally, for adversary A:
— A(s0(a1,µ1)s1...sn) depends only on sn
— resulting DTMC can be mapped to a |S|-state DTMC

• From previous example:
— adversary A1 (picks c in s1) is memoryless, A2 is not

{heads} {heads}

{tails}

{init} a 1
s0 c

0.5 a

a

58

04/01/2024 Introduction to Model Checking

Overview

59

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

PCTL

60

• Temporal logic for describing properties of MDPs
— PCTL = Probabilistic Computation Tree Logic

• Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

• Example
— send → P≥0.95 [true U≤10 deliver]
— “if a message is sent, then the probability of it being delivered

within 10 steps is at least 0.95”

04/01/2024 Introduction to Model Checking

PCTL Syntax

• PCTL
syntax:

—φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state
formulas)

—ψ ::= � φ | φ U≤k φ | φ U φ (path
formulas)

— where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula
— path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”“next”

61

04/01/2024 Introduction to Model Checking

PCTL Semantics for MDPs
• PCTL formulas interpreted over states of an MDP

— s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:
— for a state s of the MDP (S,sinit,P,L):
— s ⊨ a - a ∈ L(s)
— s ⊨ φ1 ∧ φ2 - s ⊨ φ1 and s ⊨ φ2
— s ⊨ ¬φ - s ⊨ φ is false

• Examples
— s ⊨ tails3

— s2 ⊨ heads ∧ ¬init
s

62

1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a

04/01/2024 Introduction to Model Checking

PCTL Semantics for MDPs
• Semantics of path formulas:

— for a path ω = s0s1s2… in the MDP:
—ω ⊨ � φ
—ω ⊨ φ1 U≤k φ2
—ω ⊨ φ1 U φ2

- s1 ⊨ φ
- ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1
- ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:
—� ¬init

s0 s1 s3 s3

— ¬tails U heads

{init} {} {tails}{tails}

{} {} {heads}{heads}

s1 s1 s2 s2

s

63

1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a{init}

s0

04/01/2024 Introduction to Model Checking

PCTL Semantics for MDPs

• Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary A
— s ⊨ P~p [ψ] means “the probability, from state s, that ψ is true

for an outgoing path satisfies ~p for all adversaries A”
— formally s ⊨ P~p [ψ] ⇔ ProbA(s, ψ) ~p for all adversaries A
 where ProbA(s, ψ) = PrAs {ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ

64

ProbA(s, ψ) ~p

04/01/2024 Introduction to Model Checking

Minimum andMaximum Probabilities

65

• Letting:
— pmax(s, ψ) = supA ProbA(s, ψ)
— pmin(s, ψ) = infA ProbA(s, ψ)

• We have:
— if ~∈ {≥,>}, then s ⊨ P~p [ψ]
— if ~∈ {<,≤}, then s ⊨ P~p [ψ]

- pmin(s, ψ) ~p
- pmax(s, ψ) ~p

• Model checking P~p[ψ] reduces to the computation over all
adversaries of either:
— the minimum probability of ψ holding
— the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs
— memoryless adversaries suffice, i.e. there are always

memoryless adversaries Amin and Amax for which:
— ProbAmin(s, ψ) = pmin(s, ψ) and ProbAmax(s, ψ) = pmax(s, ψ)

04/01/2024 Introduction to Model Checking

Overview

66

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

PCTL Model Checking

67

• Algorithm for PCTL model checking
• inputs: MDP M=(S,sinit,Steps,L), PCTL formula φ

— output: Sat(φ) = {s ∈ S | s ⊨ φ }= set of states satisfying φ

• What does it mean for an MDP D to satisfy a formula φ?
— sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S
— sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results
— e.g. compute the result of Pmax=? [à error]
— e.g. compute result of Pmax=? [à ≤k error] for 0≤k≤100

04/01/2024 Introduction to Model Checking

PCTL Model Checking for MDPs
• Basic algorithm proceeds by induction on parse tree ofφ

— example:φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:
— Sat(true) = S
— Sat(a) = {s ∈ S | a ∈ L(s) }
— Sat(¬φ) = S \ Sat(φ)
— Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator
— need to compute the

probabilities Prob(s,ψ)
for all states s ∈ S

— focus here on the “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

68

04/01/2024 Introduction to Model Checking

Quantitative Properties

• For PCTL properties with P as the outermost operator
— quantitative form (two types): Pmin=? [ψ] and Pmax=? [ψ]
— i.e. “what is the minimum/maximum probability (over all

adversaries) that path formula ψ is true?”
— corresponds to an analysis of best-case or worst-case

behaviour of the system
— model checking is no harder since compute the values of

pmin(s, ψ) or pmax(s, ψ) anyway
— useful to spot patterns/trends

• Example: CSMA/CD protocol
— “min/max probability

that a message is sent
within the deadline”

69

04/01/2024 Introduction to Model Checking

Some Real PCTL Examples

70

• Byzantine agreement protocol
— Pmin=? [à (agreement ∧ rounds≤2)]
— “what is the minimum probability that agreement is reached

within two rounds?”

• CSMA/CD communication protocol
— Pmax=? [à collisions=k]
— “what is the maximum probability of k collisions?”

• Self-stabilisation protocols
— Pmin=? [à ≤t stable]
— “what is the minimum probability of reaching a stable state

within k steps?”

04/01/2024 Introduction to Model Checking

PCTL Until for MDPs

• Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S
• First identify all states where the probability is 1 or 0

— “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states
(S?)
— either: solve linear programming problem
— or: approximate with an iterative solution method

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

Example: P≥p [à a]

≡

≥p
P [true U a]

04/01/2024 Introduction to Model Checking

71

PCTL Until - Precomputation

• Identify all states where pmin(s, φ1 U φ2) is 1 or 0
— Syes = Sat(P≥1 [φ1 U φ2]),Sno = Sat(¬ P>0 [φ1 U φ2])

• Two graph-based precomputation algorithms:
— algorithm Prob1A computes Syes

• for all adversaries the probability of satisfying φ1 U φ2 is 1
— algorithm Prob0E computes Sno

• there exists an adversary for which the probability is 0

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes= Sat(P≥1 [à a])

Sno = Sat(¬P>0 [à a])

Example:
P≥p [à a]

04/01/2024 Introduction to Model Checking
72

Method 1 - Linear Programming

73

• Probabilities pmin(s, φ1 U φ2) for remaining states in the
set S?= S \ (Syes ∪ Sno) can be obtained as the unique
solution of the following linear programming (LP) problem:

• Simple case of a more general problem known as the
stochastic shortest path problem

• This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut

? xs subject to the constraint s :maximize å
xs £ åµ(s') × xs' + åµ(s')

s'ÎS? s'ÎSyes

for all sÎS? and for all (a,µ)ÎSteps(s)

sÎS

04/01/2024 Introduction to Model Checking

Example - PCTL Until (LP)
Let xi = pmin(si, à a)

Syes: x2=1, Sno: x3=0
For S?= {x0,x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5
● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

74

Syes

Sno

04/01/2024 Introduction to Model Checking

Example - PCTL Until (LP)
Let xi = pmin(si, à a) Syes: x2=1,

Sno: x3=0 For S?= {x0, x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x1
1

12/3
x0

● x1 ≤ 0.2·x0 + 0.8

x1

x0 0
0 1

1

0.8

x0 0
0

x1

75

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3
x1 ≤ 0.2·x0

+ 0.8

04/01/2024 Introduction to Model Checking

Example - PCTL Until (LP)

Let xi = pmin(si, F a) Syes:
x2=1, Sno: x3=0
For S?= {x0, x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

0.8

2/3 1

max
Solution: (x0, x1)
= (2/3, 14/15)

04/01/2024 Introduction to Model Checking

76

Example - PCTL Until (LP)

Let xi = pmin(si, à a)
Syes: x2=1, Sno: x3=0

For S?= {x0, x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x00
0

x1
1

0.8

2/3 1

max
Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1
x0 ≤ 2/3

04/01/2024 Introduction to Model Checking
77

Method 2 – Value Iteration

78

• For probabilities pmin(s, φ1 U φ2) it can be shown
that:
— pmin(s, φ1 U φ2) = limn→∞ xs(n) where:

• This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

(n)

if s Î Syes

if s Î Sno

if s Î S? and n = 0

(a,µ)ÎSteps(s) s'

1

0
0
æ

ès'ÎS
çåµ(s')× xç

ö

ø

(n-1)÷÷ if s Î S? and n > 0

xs = í

ì
ï
ï
ï

î

ï
ïminï

04/01/2024 Introduction to Model Checking

Example - PCTL Until (Value Iteration)
Compute: pmin(si, à a)

Syes= {x2}, Sno={x3}, S? = {x0, x1}
(n),x (n),x (n),x (n)]
0 1 2 3

[x
n=0: [0, 0, 1, 0]

n=1
:

n=2
:

[min(0,0.25·0+0.5),
0.1·0+0.5·0+0.4, 1, 0]

= [0, 0.4, 1, 0]
[min(0.4,0.25·0+0.5),
0.1·0+0.5·0.4+0.4, 1, 0]
= [0.4, 0.6, 1, 0]

n=3: …

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

79

Syes

Sno

04/01/2024 Introduction to Model Checking

Example - PCTL Until (Value Iteration)
(n) (n) (n) (n)[x0 ,x1 ,x2 ,x3]

n=0: [0.000000, 0.000000, 1, 0]
n=1: [0.000000, 0.400000, 1, 0]
n=2: [0.400000, 0.600000, 1, 0]
n=3: [0.600000, 0.740000, 1, 0]
n=4: [0.650000, 0.830000, 1, 0]
n=5: [0.662500, 0.880000, 1, 0]
n=6: [0.665625, 0.906250, 1, 0]
n=7: [0.666406, 0.919688, 1, 0]
n=8: [0.666602, 0.926484, 1, 0]
n=9: [0.666650, 0.929902, 1, 0]

n=20
:
n=21
:

…
[0.666667, 0.933332, 1, 0]

[0.666667, 0.933332, 1, 0]
≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

80

Syes

Sno

04/01/2024 Introduction to Model Checking

Example - Value Iteration + LP

n=0:
n=1:
n=2:
n=3:
n=4:
n=5:
n=6:
n=7:
n=8:
n=9:

n=20:
n=21:

(n) (n) (n) (n)[x0 ,x1 ,x2 ,x3]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

…
[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
≈ [2/3, 14/15, 1, 0]

x0

81

x1

0
0

2/3

1

04/01/2024 Introduction to Model Checking

PCTL Model Checking - Summary

82

• Computation of set Sat(Φ) for MDP M and PCTL formulaΦ
— recursive descent of parse tree
— combination of graph algorithms, numerical computation

• Probabilistic operator P:
— � Φ : one matrix-vector multiplication, O(|S|2)
—Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)
—Φ1 U Φ2 : linear programming problem, polynomial in

|S| (assuming use of linear programming)

• Complexity:
— linear in |Φ| and polynomial in |S|
— S is states in MDP, assume |Steps(s)| is constant

04/01/2024 Introduction to Model Checking

Overview

83

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking

Costs and Rewards

84

• We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

• Some examples:
— elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

• Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise

costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless

04/01/2024 Introduction to Model Checking

Reward-Based Properties

85

• Properties of MDPs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties
— the expected value of the reward at some time point

• Cumulative properties
— the expected cumulated reward over some period

04/01/2024 Introduction to Model Checking

PCTL and Rewards
• Extend PCTL to incorporate reward-based properties

— add an R operator, which is similar to the existing P operator

—φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [à φ]

— where r ∈ ℝ≥0, ~∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

86

04/01/2024 Introduction to Model Checking

Types of Reward Formulas

87

• Instantaneous: R~r [I=k]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [C≤k]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

• Reachability: R~r [à φ]
— “the expected reward cumulated before reaching a state

satisfying φ is ~r”
— e.g. “the expected time for the algorithm to terminate”

04/01/2024 Introduction to Model Checking

Model Checking MDP Reward Formulas

88

• Instantaneous: R~r [I=k]
— similar to the computation of bounded until probabilities
— solution of recursive equations

• Cumulative: R~r [C≤k]
— extension of bounded until computation
— solution of recursive equations

• Reachability: R~r [à φ]
— similar to the case for P operator and until
— graph-based precomputation (identify∞ - reward states)
— then linear programming problem (or value iteration)

04/01/2024 Introduction to Model Checking

Summary
• Basic concepts

— Design and Validation

— Formal Verification

— Model Checking

• Probabilistic Model Checking

• Markov Decision Processes (MDPs)

— probabilistic as well as nondeterministic behaviors

— to model concurrency, underspecification, …

— easy to model using guarded commands

• Adversaries Resolve Nondeterminism in an MDP

— induce a probability space over paths

— consider minimum/maximum probabilities over all adversaries

• Property Specifications

— probabilistic extensions of temporal logic, e.g. PCTL

— also: the expected value of costs/rewards

— quantify overall adversaries

• Model Checking Algorithms

— covered two basic techniques for MDPs: linear programming
or value iteration

04/01/2024 Introduction to Model Checking
89

