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About Me

* Research Scientist and Founding Member at Augment Code
 |[ead the Al research behind Code Completion & Next Edit
 How | got into Al for Code
* Did my undergrad in Physics in China (2013-2017)
* Fell in love with programming
 AlphaGo moment (2016)
 Did my PhD in CS at UT Austin (2017-2023)
 PhD Advisor: Isil Dillig (programming languages)
 (Co-advisor: Greg Durrett (NLP)
 Summer Internship at Facebook (2020)
 EXxpression-level code autocomplete using GPT2
* GitHub Copilot was out (2022)



Your Al pair programmer

GitHub Copilot uses the OpenAl Codex to suggest code and entire functions Iin
real-time, right from your editor.

sentimentsis so write_sql.go & parse_expenses.py #3 addresses.rb
#!/usr/bin/env ts-node
import { fetch } from "fetch-h2";

// Determine whether the sentiment of text 1s positive
// Use a web service
async function 1sPositive(text: string): Promise<boolean> {

const response = awalit fetch( http://text-processing.com/api/sentiment/ , {
method: "POST",

body: "text=${text}’,
headers: ({
"Content-Type": "application/x-www-form-urlencoded",

},
});
const json = await response.json():
return json.label === "pos";

¥
& Copilot




Programming will never be the same...
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I | found Copilot probably a more useful tool when it comes to helping me write
a paper...

Image.png ¥

However, in the class of robotics problems considered in this work, we found
that the class of dynamics representable by SINDy is still too restrictive. For
example, consider the dynamic friction forces of a 1-dimensional 2-wheel robot.

The total friction has the form
\begin{alignx}
F \mathrm{total} &= F \mathrm{wheel,1} + F \mathrm{wheel, 2}\\
&= f_1 \mathrm{sign;(r_1 nega_1l - v) + f_2 \mathrm{sign;(r_2
\end{alignx}
where $v$ 1is the robot's velocity,
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I'm very impressed.

December 3rd, 2021




Program synthesis with AlphaCode

o%i} Research

Competitive programming with
AlphaCode

December 8, 2022

Note: This blog was first published on 2 Feb 2022. Following the paper’s publication

in Science on 8 Dec 2022, we've made minor updates to the text to reflect this.

Solving novel problems and setting a new milestone in
competitive programming



Doing a lot more with ChatGPT

i

Amjad Masad & &
@amasad

ChatGPT could be a good debugging companion; it
not only explains the bug but fixes it and explain the

fix 5

Find the bug with this code:

for (vari=0;i<5;i++) {
setTimeout(() => console.log(i), 1000)

}

The code contains a bug that will cause it to always print the number 5 to the console,
rather than the expected sequence of numbers from 0 to 4. This is because the
‘setTimeout” function creates a closure that captures the value of the *1” variable, but

the "1 variable is changed before the callback function is executed.

To fix this bug, the code can be modified to create a new variable in the loop that is
passed to the “setTimeout " callback function, rather than using the loop variable directly.
This will ensure that each callback function captures the correct value of the loop variable,

and the expected output will be produced. Here is an example of how the code could be
fixed:

value = 1;
setTimeout{((Q) =>

). 317070
- @317070
Did you know, that you can build a virtual machine

inside ChatGPT? And that you can use this machine

to create files, program and even browse the
internet?

engraved.blog
Building A Virtual Machine inside ChatGPT

Unless you have been living under a rock, you have heard of this new ChatGPT
assistant made by OpenAl. Did you know, that you can run a whole virtual ...



A limited view of programs

Competition-Level Code Generation with AlphaCode:

Compared to decoder-only architectures commonly used for language modeling and generation,
.~ an encoder-decoder architecture allows a bidirectional description representation (tokens at the .
beginning of the description can attend to tokens at the end) and the extra flexibility to untie the
~ encoder structure from the decoder. Because problem descriptions are on average twice as long as
their corresponding human solutions, we use an asymmetric architecture with 1536 tokens for the
- encoder but only 768 tokens for the decoder. We further found that using a shallow encoder and a
deep decoder significantly improves the efficiency of training without hurting problem solve rate. The
 exact architectures for our models are listed in Table 3. The 9B and 41B models were trained using
- model parallelism, with 1 key and value head per shard. We built our model using JAX (Bradbury
- et al., 2018) and Haiku (Hennigan et al., 2020), and trained them on TPUv4 accelerators using
- bfloat16 precision.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation:

- We build CodeT5 based on Huggingface’s T5 (Raf-
~ fel et al.,, 2020) PyTorch implementation® and
employ two sizes of CodeT5-small (60M) and
: CodeT5-base (220M). We set the maximum source
and target sequence lengths to be 512 and 256, re-
spectively. We use the mixed precision of FP16 to
 accelerate the pre-training. We set the batch size
" to 1024 and employ the peak learning rate of 2e-4
 with linear decay. We pre-train the model with the



My PhD Thesis: Machine Learning + Static Analysis

Codebase

Static Analysis +

Code Transformation ML Model

Programming Tasks
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l Coeditor
Jiayi Wei | & 375installs | ¢ v % % % (1) | Free

Al-powered Python code editing assistant.
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My 2 years at Augment

* Joined Augment Code as a founding member (2023-present)
* More about Augment

* Building coding assistants focusing on enterprise developers and large
codebases

e https://www.augmentcode.com/

* Project 1: Improve FIM for our completion model (~4 months)
* Project 2: Signature retrieval (~8 months)

 Used some ideas from our type inference work

* Project 3: Next Edit (~1 year)

 Used lots of ideas from our Coeditor work


https://www.augmentcode.com/

How to train a Code Completion model

The fill-in-the-middle (FIM) task
« "Efficient Training of Language Models to Fill in the Middle", Bavarian et al 2022

def unique(l: list):
"I'"Return sorted unique elements in a list
>>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])

[0, 2, 3, 5, 9, 123] Next Token Prediction Training

return sorted(list(set(1)))

—> GPT (N ext Tokenj

< ( prefix ) ( Midde )(  Sufix )
(<,>)(  prefix  )(<s>)(  suffix )(<M>)( Middle )(<E>)




Issues with standard FIM training

Model sometimes give unlikely suggestions

MODEL: new-FIM-starcoder-pythan-=559K

EXAMPLE: fim_argparse.py v | model=new-FIM-starcoder-python-559K, temp=@, sample=02

help="disable completions",

)

parser.add_arqument (
"——disable_completion_requests", default=False,
action="store_true",

Expected: default=False,




Issues with standard FIM training, ex 2

return f"{self.name} is a {self.profession} and lives at {self.home_address}"

age(self):
today = datetime.date.today() age = datetime.date.today() - self.dob

age = today.year - self.dob.year
if today.month < self.dob.month or (today.month == self.dob.month and today.d

age —= 1




Issues with standard FIM training, ex 3

Bad

to the middle string."""

prefix_dividers: list[int]
"""Character positions that divide the prefix into syntactic units.
These indices are relative to the prefix string."""

suffix dividers: list[int]
"""Character positions that divide the suffix into syntactic units.
These indices are relative to the suffix string."""

prefix_range: CharRange
"""The character range of the prefix span."""

suffix_range: CharRange
"""The character range of the suffix span."""
Gproperty
def prefix_length(self) -> int:
return len(self.prefix)

@praoperty
def suffix_length(self) -> int:
return len(self.suffix)

@Eproperty
def middle_length(self) -> int:
return len(self.middle)

Eproperty
def prefix_middle_ length(self) —> int:
return self.prefix_length + self.middle_length

t0 the middle span.




Better FIM training using program structure

* Real middle spans are not uniformly randomly distributed
* \We can sample more realistic middle spans by taking AST structure into account

 Model consider realistic solutions more if you exclude unrealistic examples from the
training data

* In WIP code, multiple code snippets can be missing

span 1 function 1 functon2 function3 span 2
signature body |
/ | \ randomly dropped

stmt ~ forloop : return ¢——’*’//

11 Il

prefix middle suffix



Better FIM training: Result

* \We see improved code completion performance across different languages
* Including the ones we didn’t train on
* The model suggestions are more intuitive and predictable
 Using AST structure, we further taught the model how to <|pause|>and <|skip|>

def make_or_load_ground_truth_data(
, cache: PickleCache,
Some—long—funCtlon( ean)! all _data: Sequence [NextEditIntermediateTypel,

— [x_expression] max_repo_Tiles: int = 40_000,

= [y_expr_left]l<fim-middle>[y_expr_right] <pause: DS REODSSRERESES S ol
max_workers: int = 16,

<fim-prefix>

- [Z_expreSSlon] <pause-> ) —> tuple[list[tuple[NextEditIntermediateTy..:
for value in [x,y,z]: n_before = len(all_data)

all_data = [[

| datum for datum in all_data if

< ' yause> . ]
[statement after the for loopl<fim-stop> n_after = len(all_data)
<fim-suffix> Arearte) ‘ oy S
return [return_expression]

# do something with the value

all _data = sorted(all _data, key=lambda d: d.session_id)
print(
f'"Keeping {n_after} ({n_after / n_before:.1%}) examples with <= {max_repo_files}

)



Coeditor:
Leveraging Repo-level diffs for
Code Auto-editing

Jiayi Wei, Greg Durrett, Isil Dillig
April 2024

The University of Texas at Austin
Computer Science U To Pi A

16

e A s ol

a2
TAUR LAB



Coeditor VSCode demo

17



Contributions

Coeditor vo.4.4
New Task JiayiWei D246 Kk k kKK (1)

e Multi-round code auto_editing / ) Al-powered Python code editing assistant.
e The PyCommits dataset” install 5>

DETAILS FEATURES

Categories

. Coeditor Extension for
Coeditor Model VSCode Other

* Encoding/decoding changes using line diffs
. . Al-powered Python code change
e Adapted CodeT5 with sparse attention® sugpgesnon usfng the Coucitor model. T
. . . T ssues
* Retrieval Augmented using static analysis s ke Github Conlot but for auto- s

completing your code edits. Watch how License

Resources

Coeditor works on Youtube. EVIRE

Evaluation

e Comparing with completion models

e Multi-round editing®
e Ablation studies”

(*) Not in this talk.

18



Setting: Multi-round code auto-editing

Target Function/Class Recent Changes .I

»
Main Input :

Context

Seq2Seq Model
0 e®
.... ’ eQ\"(
Code Changes | :------=""" (000

19




Encoding code changes...

...as line diffs [...]

if ref_size_sum + len(ref) <= args.max_total_ref_
ref_selected.append(ref)
ref_size _sum += len(ref)
<add> input_tks, output_tks = process_edit(edit, args)
ex_cost = retrieval _cost_model(
ref_size=sum(len(x) for x in ref_selected),

<add> query_size=len(input_tks),

<del> query_size=len(input_tks_list[i]),
<add> output_size=len(output_tks),

<del> output_size=len(output_tks_list[i]),

)

ref_selected.sort(key=lambda x: id2ref_name[id(x)])

row = {
<add> “"input_tks": input_tks,
<del> "input_tks": input_tks_list[i],
<add> "output_tks": output_tks,
<del> "output_tks": output_tks_list[il,
"ref_selected": ref_selected,
<add> "cost": ex_cost,
}

1f ex_cost > cost_limit:
warnings.warn("Batch cost limit is too small.")
if ex_cost + current_cost <= cost_limit:

20



Decoding code changes

<]1>
<2>
<3>
<4><add>
<5>
<O>
<J7>
<8>
<O>
<10>
<11>
<12>
<13>
<14>
<15><add>
<16>
<17>
<18>
<19>
[...]

ref_size_sum = 0
ref_selected = list[TokenSeq] ()
for ref in all_refs:
if ref_size_sum + len(ref) <= args.max_total_
ref_selected.append(ref)
ref size sum += len(ref)
input_tks, output_tks = process_edit(edit, ar
ex_cost = retrieval_cost_model(
ref_size=sum(len(x) for x in ref_selected),
query_size=len(input_tks_list[i]),
output_size=len(output_tks_list[i]),
)
ref_selected.sort(key=lambda x: id2ref_name[id(x)
row = {
"input_tks": input_tks_list[i],
"output_tks": output_tks_list[i],
"ref_selected": ref_selected,
"cost": ex_cost,
}
if ex_cost > cost_Llimit:
warnings.warn("Batch cost limit is too small.
if ex cost + current _cost <= cost limit:

Input: adds placeholder tokens to
iIndicate code region to edit.

21

<7> <add>
<del>
<8> <add>
<del>

<12> <add>
<del>
<13> <add>
<de 1>
<14>

query_size=len(input_tks),

output_size=len(output_tks),

"input_tks": input_tks,

"output_tks": output_tks,

Output: specifies further changes at
each placeholder token (if any).




Decoding code changes

<1>
<2>
<3>
<4><add>

<10>
<11>
<12>
<13>
<14>
<15><add>
<16>
<17>
<18>
<19>
[...]

ref _size sum = 0
ref_selected = list[TokenSeq] ()
for ref in all_refs:
if ref_size_sum + len(ref) <= args.max_total_
ref_selected.append(ref)
ref_size sum += len(ref)
input_tks, output_tks = process_edit(edit, an
ex_cost = retrieval_cost_model(
ref_size=sum(len(x) for x in ref_selected),
query_size=len(input_tks_list[i]),
output_size=1len(output_tks_list[i]),
)
ref_selected.sort(key=1lambda x: id2ref_name[id(x)
row = {
“"input_tks": input_tks_list[i],
"output_tks": output_tks_list[i],
"ref_selected": ref_selected,
"cost": ex_cost,
}
if ex_cost > cost_limit:
warnings.warn("Batch cost limit is too small.
if ex_cost + current_cost <= cost_limit:

Input: adds placeholder tokens to
indicate code region to edit.
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<7> <add>
<del>
<8> <add>
<del>

<12> <add>
<del>
<13> <add>
<del>

query_size=len(input_tks),

output_size=len(output_tks),

"input_tks": input_tks,

"output_tks": output_tks,

Output: specifies further changes at
each placeholder token (if any).




Decoding code changes

<1>
<2>
<3>

<5>
<6>

<7>

<8>

<9>
<10>
<11>

<12>

<13>

<14>

<16>
<17>
<18>
<19>
[...]

<4><add>

<add>
<del>
<add>

<add>
<del>
<add>
<del>

<15><add>

ref _size sum = 0
ref_selected = list[TokenSeq] ()
for ref in all_refs:
if ref_size_sum + len(ref) <= args.max_total_
ref_selected.append(ref)
ref_size sum += len(ref)
input_tks, output_tks = process_edit(edit, an
ex_cost = retrieval_cost_model(
ref_size=sum(len(x) for x in ref_selected),

query_size=len(input_tks),

output_size=len(output_tks),

)
ref_selected.sort(key=lambda x: id2ref_name[id(x)
row = {

"input_tks": input_tks,

"output_tks": output_tks,

"ref_selected": ref_selected,
"cost": ex_cost,
}
if ex_cost > cost_limit:
warnings.warn("Batch cost limit is too small.
if ex_cost + current_cost <= cost_limit:

23
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Model Architecture: CodeT5

 \We finetune CodeT5-base (220M params), which was pre-trained on masked span infilling

<0>
<l>
<2> <add> new_code = apply_edit(suggestion, current ..

<del>
<3>

T BPE decode

.. (<2>)<add>)(new_)code)(=)(apply_)edit)(()suggestion)(,)current_) ..

.. (<2>)<8space>)(apply_)edit)(()suggestion)(,(file)))(<newline>) ..

1 BPE tokenize

<0> suggestion = ...

<1> it apply:

<2> apply_edit(suggestion, file)
<3> <add> file.write(new_code)

24



Simulating Partial Changes

1 Model Input:
2 <add> def apply_edit(edit: Edit, text: str) -> str:
3 <del> def apply_edit(edit: Edit, file: File):
4 <add> "Apply the edit to the given string"
5 <del> "Apply the edit to the content of given file"
Past Changes S # omitted...
"""""""""""""""" 8  def suggest_edit(
Editing Scope o file: Path,
10 line: int,
11 apply: bool = False
12 )
13 <mask_@> suggestion =...
14 <mask_1> if apply:
15 <mask_2> apply_edit(suggestion, file)
16 <mask_3>
___________________________ S,
18 Model Qutput:
Model Output 1 <mask >
20 <mask_1>
21 <mask_2> <add> new_code = apply_edit(suggestion, current_code)
22 <del>
23 <mask_3> <add> file.write(new_code)

25



Simulating Partial Changes

1 Model Input:

2 <add> def apply_edit(edit: Edit, text: str) -> str:

3 <del> def apply_edit(edit: Edit, file: File):

4 <add> "Apply the edit to the given string"

5 <del> "Apply the edit to the content of given file"
Past Changes t; # omitted...

"""""""""""""""" 8  def suggest_edit(

Editing Scope file: Path,

10 line: 1int,

11 apply: bool = False

12 ):

13 <mask_0> suggestion =...

14 <mask_1> if apply:

15 <mask_2> apply_edit(suggestion, file)

16 <mask_3> <add> file.write(new_code)

___________________________ y -

18 Model Qutput:
Model Output 19 <mask 0>

20 <mask_1>

21 <mask_2> <add> new_code = apply_edit(suggestion, current_code)

22 <del>

23 <mask_3>



Constructing the PyCommits Dataset

e Split the changes in each commit by syntactic scopes
e Within a commit, assume a linear modification order

Codebase History
Git Commit

Change 1 Change t-1 Change t

Prediction Context Query and Output

Sorted by location and file imports

27



Comparison with Code Completion Models

e Test data: use last changed line from real commits as completion target
e Code completion models only see current version of the code
e Coeditor also sees same-commit changes

Table 3: Performance on 5000 code completion instances extracted from edits (PYCOMMITS-
ONELINE). Add EM and Replace EM are the (enhanced) exact-match accuracies on addition and
replacement change, respectively.

Model Parameters Context [iﬁaa ﬁitlzl:eRat(e)\EZ) 3 T
InCoderlB 1.3B 2K 29.0 25.2 26.2
InCoder6B 6.7B 2K 34.0 30.4 31.3
SantaCoder 1.1B 2K 31.0 28.1 28.8
StarCoder7B 7B 8K 37.9 33.7 34.8
text-davinci-003 175B 4K 40.2 393 395
Coeditor 220M 16K 47.1 64.9 60.4

28



The Next Edit feature: background mode

£3 augment code

Feature Intro:
Next Edit



https://www.youtube.com/watch?v=GPQgQpXbunc

The Next Edit feature: global mode  tarts around 2:00



Improvements over Coeditor

Predicts when and where to make the next change

* Vv.s. Coeditor requires the user to specify which snippet to edit next
Works on any programming language

* v.s. Coeditor only works on Python

Can edit lines that have been already been modified

* v.s. Coeditor is trained to only edit unmodified lines

* This requires feeding model a more granular edit history that distinguish newer
edits from older ones

Switched to a much larger model trained on much more data



The 3 big challenges when building Next Edit

* Figuring out what tasks the user is trying to accomplish
* Figuring out where to make those changes
* Figuring out how to make the edits



Figuring Out What Tasks the User Is Trying to Accomplish

Challenges:

 Non-linear Editing Histories
* copy a block of code, paste it elsewhere, and immediately modify it significantly.
 make multiple edits in rapid succession, frequently switching between files or functions
 undo and redo changes as they experiment with different implementations.

* These non-linear workflows create a messy trail of changes that can mislead a model trying to
infer the developer's true intent.

e Unintended Biases

* For example, the model might learn to avoid touching parts of the codebase that already contain
recent changes. This is problematic because those areas might be precisely where further edits
are needed.

 Intention Hallucination

 Models might hallucinate intentions, suggesting changes that are not directly related to the user's
recent edits.

e This occurs when the model tries to be overly proactive, aiming to cover all possible relevant
edits (high recall), which can result in noisy and disruptive suggestions.

 There's a delicate balance between being "helpful but noisy" and "accurate but passive."



Figuring Out What Tasks the User Is Trying to Accomplish

Solution:

* Simulating Common Editing Scenarios:

* developed a sophisticated algorithm to simulate realistic editing scenarios that
reflect common developer behaviors by analyzing commit messages, initial commit
states, and final commit states

* Optimizing Diff Granularity:

e taught our models to read fine-grained editing events while carefully optimizing the
granularity of diffs presented in the prompt

* too fine-grained -> model may be distracted by the noise in the user’s editing
history

* too coarse, model may struggle to distinguish newer changes from older ones

* Avoiding Undoing User's Recent Changes:
* model sometimes had a strong tendency to undo the user's recent changes
 made special efforts to improve our training samples to discourage this behavior
* add inference-time filter to prevent undoing edits



Figuring Out Where to Make Those Changes

Challenges:

* Scalability

* The localization mechanism needs to be scalable to handle large-scale codebases
efficiently without consuming excessive resources.

 Speed

* |t needs to be extremely fast to support highly interactive usage patterns,
providing immediate suggestions as the user makes new changes.

e Relevance

* |t must accurately identify relevant locations without overwhelming the user with
unnecessary suggestions or missing important ones.



Figuring Out Where to Make Those Changes

Solution:

e Edit Localization with a Trained Retriever

* We trained a fast retriever model specifically designed to identify code locations
likely to require updates

* Editing Surrounding Code first

 The code around the user's cursor is always added to the list of candidate
locations and processed first without waiting the localization model

el =




Figuring Out How to Make the Edits

Challenges:

« Complex Edits Beyond Cursor Insertions

* We need to adapt the Coeditor’s T5-based architecture to be compatible with the
newest open-source LLMs, which all use a decoder-only architecture.

 Latency Constraints

* (Generating edits should be fast enough for real-time usages.

* |t should be really cheap for the model to reject a given location.
 Codebase Awareness

* Suggestions need to match the project's coding standards, conventions, and
correctly use custom APIs.



Figuring Out How to Make the Edits

Solution:

* Novel Diff Decoding Scheme

* We taught the model to output a specialized diff format that is both compact and
unambiguously applicable to the original code.

* This format minimizes the number of tokens generated and enables efficient
processing of large files.

 Codebase-Aware Suggestions

* We leveraged our powerful Retrieval Augmented Generation (RAG) infrastructure
to add codebase-specific context to Next Edit.

 The model conditions its prediction on both the recent edits and retrieved
information that’s specific to the given location.

* This ensures that the edits are not only aligned with what the user is trying to
accomplish but also consistent with existing APIs and coding patterns


https://www.augmentcode.com/blog/a-real-time-index-for-your-codebase-secure-personal-scalable

Summary

 We're now working on scaling up Next Edit to handle larger-scale changes, from

enhancing the model's ability to understand broader contexts and dependencies to
supporting bulk edits across many files simultaneously.

 We're also exploring deeper integration with our chat functionality, which could

provide additional context for edit suggestions and enable more interactive
problem-solving workflows.



My learnings

* Focus on impact

* Avoid working on things that don’t matter in the medium-to-long run.
* Think about opportunity cost.

* Optimize for iteration speed

 Don’t try to do things in the most perfect way. Others likely will have a different
opinion on what’s best.

 Use evolvable designs. Be prepared to adapt based on new information.

* Avoid unnecessary coupling. Less coupling -> more people can work in parallel.
 Make things super easy to reuse. People tend to only reuse something if it’s easy.
 (Constantly ask yourself: are there ways to move faster?



