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Building Coding Assistants at Augment
The research behind Code Completion, Code Retrieval, and Next Edit



• Research Scientist and Founding Member at Augment Code

• Lead the AI research behind Code Completion & Next Edit

• How I got into AI for Code

• Did my undergrad in Physics in China (2013-2017)

• Fell in love with programming

• AlphaGo moment (2016)


• Did my PhD in CS at UT Austin (2017-2023)

• PhD Advisor: Isil Dillig (programming languages)

• Co-advisor: Greg Durrett (NLP)


• Summer Internship at Facebook (2020)

• Expression-level code autocomplete using GPT2


• GitHub Copilot was out (2022)

About Me
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Programming will never be the same…
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Program synthesis with AlphaCode
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Doing a lot more with ChatGPT
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A limited view of programs
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Competition-Level Code Generation with AlphaCode:

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models 
for Code Understanding and Generation:



My PhD Thesis: Machine Learning + Static Analysis
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Codebase

Programming Tasks Probabilistic Type  
Inference

Contextual Code  
Auto-editing

Static Analysis +  
Code Transformation ML Model



• Joined Augment Code as a founding member (2023-present)

• More about Augment

• Building coding assistants focusing on enterprise developers and large 

codebases

• https://www.augmentcode.com/


• Project 1: Improve FIM for our completion model (~4 months)

• Project 2: Signature retrieval (~8 months)

• Used some ideas from our type inference work


• Project 3: Next Edit (~1 year)

• Used lots of ideas from our Coeditor work

My 2 years at Augment

https://www.augmentcode.com/


How to train a Code Completion model
The fill-in-the-middle (FIM) task

GPT Next Token

• "Efficient Training of Language Models to Fill in the Middle", Bavarian et al 2022

Prefix SuffixMiddle

<S><P> <M>Prefix Suffix Middle <E>

Next Token Prediction Training



Issues with standard FIM training
Model sometimes give unlikely suggestions

Bad Good



Issues with standard FIM training, ex 2
Bad Good



Issues with standard FIM training, ex 3
Bad Good



Better FIM training using program structure
• Real middle spans are not uniformly randomly distributed

• We can sample more realistic middle spans by taking AST structure into account

• Model consider realistic solutions more if you exclude unrealistic examples from the 

training data

• In WIP code, multiple code snippets can be missing



Better FIM training: Result
• We see improved code completion performance across different languages

• including the ones we didn’t train on


• The model suggestions are more intuitive and predictable

• Using AST structure, we further taught the model how to <|pause|> and <|skip|>



Coeditor:  
Leveraging Repo-level diffs for 

Code Auto-editing 

Jiayi Wei, Greg Durrett, Isil Dillig
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April 2024
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Coeditor VSCode demo



Contributions
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New Task

Evaluation

• Comparing with completion models

• Multi-round editing*

• Ablation studies*

• Multi-round code auto-editing

• The PyCommits dataset*

Coeditor Model

• Encoding/decoding changes using line diffs

• Adapted CodeT5 with sparse attention* 

• Retrieval Augmented using static analysis*

(*) Not in this talk.



Setting: Multi-round code auto-editing
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Target Function/Class

Codebase

Recent Changes

Seq2Seq Model

Code Changes

Main Input Context

If u
ser accept, re

peat.



Encoding code changes…
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…as line diffs



Decoding code changes
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Input: adds placeholder tokens to 
indicate code region to edit.

Output: specifies further changes at 

each placeholder token (if any).




Decoding code changes

22

Input: adds placeholder tokens to 
indicate code region to edit.

Output: specifies further changes at 

each placeholder token (if any).




Decoding code changes
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💡 Masked Span Infilling! 💡



..  <2> <8space> apply_ edit ( suggestion , file ) <newline>  ..

Model Architecture: CodeT5
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<0>    suggestion = ... 
<1>    if apply: 
<2>        apply_edit(suggestion, file) 
<3> <add>         file.write(new_code)

<0> 
<1> 
<2> <add> new_code = apply_edit(suggestion, current .. 
    <del>  
<3> 

CodeT5 Decoder

CodeT5 Encoder

..  <2> <add> new_ code = apply_ edit ( suggestion , current_  ..

BPE tokenize

BPE decode

• We finetune CodeT5-base (220M params), which was pre-trained on masked span infilling



Simulating Partial Changes
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Past Changes

Editing Scope

Model Output
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Past Changes

Editing Scope

Model Output

Simulating Partial Changes



Constructing the PyCommits Dataset
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• Split the changes in each commit by syntactic scopes

• Within a commit, assume a linear modification order

Change 1

Git Commit

Change t-1 Change t… …

Query and OutputPrediction Context

Sorted by location and file imports

Codebase History



Comparison with Code Completion Models  

28

• Test data: use last changed line from real commits as completion target

• Code completion models only see current version of the code

• Coeditor also sees same-commit changes



The Next Edit feature: background mode

https://www.youtube.com/watch?v=GPQgQpXbunc


The Next Edit feature: global mode (starts around 2:00)



Improvements over Coeditor
• Predicts when and where to make the next change

• v.s. Coeditor requires the user to specify which snippet to edit next


• Works on any programming language

• v.s. Coeditor only works on Python


• Can edit lines that have been already been modified

• v.s. Coeditor is trained to only edit unmodified lines

• This requires feeding model a more granular edit history that distinguish newer 

edits from older ones

• Switched to a much larger model trained on much more data



The 3 big challenges when building Next Edit
• Figuring out what tasks the user is trying to accomplish

• Figuring out where to make those changes

• Figuring out how to make the edits



Figuring Out What Tasks the User Is Trying to Accomplish

• Non-linear Editing Histories 
• copy a block of code, paste it elsewhere, and immediately modify it significantly.

• make multiple edits in rapid succession, frequently switching between files or functions

• undo and redo changes as they experiment with different implementations. 

• These non-linear workflows create a messy trail of changes that can mislead a model trying to 

infer the developer's true intent.

• Unintended Biases


• For example, the model might learn to avoid touching parts of the codebase that already contain 
recent changes. This is problematic because those areas might be precisely where further edits 
are needed.


• Intention Hallucination

• Models might hallucinate intentions, suggesting changes that are not directly related to the user's 

recent edits. 

• This occurs when the model tries to be overly proactive, aiming to cover all possible relevant 

edits (high recall), which can result in noisy and disruptive suggestions. 

• There's a delicate balance between being "helpful but noisy" and "accurate but passive."

Challenges:



Figuring Out What Tasks the User Is Trying to Accomplish

• Simulating Common Editing Scenarios:

• developed a sophisticated algorithm to simulate realistic editing scenarios that 

reflect common developer behaviors by analyzing commit messages, initial commit 
states, and final commit states


• Optimizing Diff Granularity: 

• taught our models to read fine-grained editing events while carefully optimizing the 

granularity of diffs presented in the prompt

• too fine-grained -> model may be distracted by the noise in the user’s editing 

history

• too coarse, model may struggle to distinguish newer changes from older ones


• Avoiding Undoing User's Recent Changes: 

• model sometimes had a strong tendency to undo the user's recent changes

• made special efforts to improve our training samples to discourage this behavior

• add inference-time filter to prevent undoing edits

Solution:



Figuring Out Where to Make Those Changes

• Scalability 
• The localization mechanism needs to be scalable to handle large-scale codebases 

efficiently without consuming excessive resources.

• Speed

• It needs to be extremely fast to support highly interactive usage patterns, 

providing immediate suggestions as the user makes new changes.

• Relevance

• It must accurately identify relevant locations without overwhelming the user with 

unnecessary suggestions or missing important ones.

Challenges:



Figuring Out Where to Make Those Changes

• Edit Localization with a Trained Retriever 
• We trained a fast retriever model specifically designed to identify code locations 

likely to require updates

• Editing Surrounding Code first 
• The code around the user's cursor is always added to the list of candidate 

locations and processed first without waiting the localization model

Solution:

Codebase Localization 
Model Locations Editor Model

Cursor Location



Figuring Out How to Make the Edits

• Complex Edits Beyond Cursor Insertions

• We need to adapt the Coeditor’s T5-based architecture to be compatible with the 

newest open-source LLMs, which all use a decoder-only architecture.

• Latency Constraints

• Generating edits should be fast enough for real-time usages.

• It should be really cheap for the model to reject a given location.


• Codebase Awareness

• Suggestions need to match the project's coding standards, conventions, and 

correctly use custom APIs.

Challenges:



Figuring Out How to Make the Edits

• Novel Diff Decoding Scheme

• We taught the model to output a specialized diff format that is both compact and 

unambiguously applicable to the original code.

• This format minimizes the number of tokens generated and enables efficient 

processing of large files.

• Codebase-Aware Suggestions 
• We leveraged our powerful Retrieval Augmented Generation (RAG) infrastructure 

to add codebase-specific context to Next Edit.

• The model conditions its prediction on both the recent edits and retrieved 

information that’s specific to the given location.

• This ensures that the edits are not only aligned with what the user is trying to 

accomplish but also consistent with existing APIs and coding patterns

Solution:

https://www.augmentcode.com/blog/a-real-time-index-for-your-codebase-secure-personal-scalable


• We're now working on scaling up Next Edit to handle larger-scale changes, from 
enhancing the model's ability to understand broader contexts and dependencies to 
supporting bulk edits across many files simultaneously. 


• We're also exploring deeper integration with our chat functionality, which could 
provide additional context for edit suggestions and enable more interactive 
problem-solving workflows.

Summary



• Focus on impact

• Avoid working on things that don’t matter in the medium-to-long run.

• Think about opportunity cost.


• Optimize for iteration speed

• Don’t try to do things in the most perfect way. Others likely will have a different 

opinion on what’s best.

• Use evolvable designs. Be prepared to adapt based on new information.

• Avoid unnecessary coupling. Less coupling -> more people can work in parallel.

• Make things super easy to reuse. People tend to only reuse something if it’s easy.

• Constantly ask yourself: are there ways to move faster?

My learnings


