
Homework 6b
Jing-Yi Liu (jingyiyl@umich.edu) (no collaborators)

1. Selected project: I selected the MuseScore Project (GitHub:
https://github.com/musescore/MuseScore, website: https://musescore.org/en) which is an
open-source music notation software. In other words, it allows composers to typeset sheets of
music in the same way Microsoft Word, for example, allows writers to typeset documents.

2. Social Good indication: I do not believe that MuseScore contributes to the 17 Sustainable
Development Goals. However, it is one of the only (and as far as I know, the first) completely
free, professional, modern music notation software, so it helps reduce the barrier to entry for
musicians and composers and reduce inequality in music education.

3. Project context1,2,3,4: MuseScore started as a free open-source program developed by 3 people
(Werner Schweer, Nicolas Froment and Thomas Bonte), with the support of the larger music
community. It is released under the GNU General Public License, ensuring it will always be free
and open source. As the founders put it, the mission was to "democratise access to sheet
music". It is now the most popular notation software on the market, and was acquired by
Ultimate Guitar in 2017, who contributed full-time paid developers to the team, including Martin
Keary (Lead Designer) and Vasily Pereverzev (Lead Developer). It seems like Schweer, Froment,
and Bonte are no longer actively involved in development. Development is paid for by the sheet
music sharing platform musescore.com (the software website is musescore.org), in which users
can upload and download sheet music made by the community. Accessing the catalog of scores
(which also includes official scores licensed from famous music publishers) requires paying an
annual subscription of $39.99. As of the time of writing, the only major competitors to
MuseScore are Dorico ($579.99), Finale ($600), and Sibelius ($9.99/month), none of which are
accessible to beginner and amateur musicians. The other free alternatives like Noteflight and
Flat.io have severely limited capabilities in comparison to MuseScore, since their business model
locks functionalities behind paywalls, unlike MuseScore, where the entire program with all its
functionalities is free and open source. With the update to MuseScore4, its developers have also
created the state-of-the-art playback technology MuseSounds (hear the difference here:
https://youtu.be/Qct6LKbneKQ?t=1858), and as far as I know is the only notation software
currently with this technology built in (previously, musicians had to manually program
Dorico/Sibelius/etc. to work with NotePerformer or some other technology to get the same
effect, something that takes tremendous technical skill). In my opinion, MuseScore is no longer
just "the free one" when compared to other notation software, but is genuinely the best music
notation software on the market.

4. Project governance: All contributions are done through the GitHub repository, and formal
communication about a specific issue or pull request are done on those respective pages on
GitHub. General/informal discussion about development are done on the forum at
https://musescore.org/en/forum/687, and on the discord server at
https://discord.gg/HwHhXEbJ4r. News from the project maintainers to the community is (more
informally) distributed through the form, (more formally) through the blog at
https://musescore.org/en/news and on various social media, and (rarely) through the YouTube
channel of the lead designer: https://www.youtube.com/@Tantacrul. On the GitHub page, there
is a wiki (https://github.com/musescore/MuseScore/wiki/) with information on contribution,

1 https://blog.musescore.com/post/171048706627/musescore-joins-ultimate-guitar
2 https://www.youtube.com/watch?v=Qct6LKbneKQ
3 https://en.wikipedia.org/wiki/MuseScore#History
4 https://blog.musescore.com/post/171048786232/ultimate-guitar-welcomes-musescore

mailto:jingyiyl@umich.edu
https://github.com/musescore/MuseScore
https://musescore.org/en
https://youtu.be/Qct6LKbneKQ?t=1858
https://musescore.org/en/forum/687
https://discord.gg/HwHhXEbJ4r
https://musescore.org/en/news
https://www.youtube.com/@Tantacrul
https://github.com/musescore/MuseScore/wiki/
https://blog.musescore.com/post/171048706627/musescore-joins-ultimate-guitar
https://www.youtube.com/watch?v=Qct6LKbneKQ
https://en.wikipedia.org/wiki/MuseScore#History
https://blog.musescore.com/post/171048786232/ultimate-guitar-welcomes-musescore

including a set of guidelines about style and coding principles that contributors must follow
(https://github.com/musescore/MuseScore/wiki/CodeGuidelines). The source code also includes
a test suite, and the wiki includes an entire section on suggested testing practices. There is also a
wiki section on functional requirements
(https://github.com/musescore/MuseScore/wiki/Functional-requirements), but it seems to be
still in progress. The wiki also describes how contributions are to be made; how to fork the
repository, make feature branches, pull requests, etc.
(https://github.com/musescore/MuseScore/wiki/Submit-a-Pull-Request). Every pull request
made is automatically run through 11 continuous integration tests (which include style checks)
to make sure the contribution is good to merge; see below for the checks on my pull request.

Pull requests must be reviewed and accepted by a project maintainer (a.k.a. internal developer,
i.e. employee at Ultimate Guitar) before they are merged into the master branch. See below for
an example closed issue.

Issues are labeled by priority and severity, as well as the type of issue (such as engraving,

https://github.com/musescore/MuseScore/wiki/CodeGuidelines
https://github.com/musescore/MuseScore/wiki/Functional-requirements
https://github.com/musescore/MuseScore/wiki/Submit-a-Pull-Request

playback, UI, etc.). The priority system has 4 levels and the severity system is based on the
specific type of behavior; e.g. system crashes, file corruption, feature request, etc.

There are also tags that indicate an issue is intended for the community to address vs the
internal development team, issues that require specialist tools/skills, and good first issues for
new contributors. Some issues are assigned to specific internal developers, especially the ones
that need to be addressed quickly, but in general there is no system for assigning or claiming
specific issues. There is an internal QA team, but their actions are not very transparent to the
public. In general, the project maintainers and wider community are very active (I've always
gotten responses for any questions in the Discord or on GitHub within a few hours), so the
communication feels informal yet rigorous.

5. Task description: I implemented task 1 from HW6a:
https://github.com/musescore/MuseScore/issues/8964. In essence, there are buttons in the UI
that only have functionality when the user has a score open, and a member of the community
wanted those buttons to be disabled or removed when there was no score open (analogous to
having Microsoft Office open without any particular document or file open). There was already a
previous attempt at implementing this by making the buttons unresponsive when no score was
open (https://github.com/musescore/MuseScore/pull/13584) but it was rejected because the
desire was to have the buttons be completely disabled (greyed out, as seen to the right, below)

 or
removed, not just have them unresponsive (i.e. the animation that indicates a button is pressed
doesn't play). I started my implementation by trying to modify the previous attempt to remove
the buttons instead of simply making them unresponsive, but I soon realized that the previous
attempt modified each button one-by-one, but the buttons in question were grouped together in
a module in the code. It would be faster for me (and better for code readability/maintainability)
if I changed the visibility of the entire module. The implementation of the panel is such that it is
"rebuilt" every time the user changes their selection (because the panel contains options
regarding the item being selected), so my implementation prevents the modules in question
from being built when there is no score open.

6. Submitted artifacts: My official pull request is at
https://github.com/musescore/MuseScore/pull/17278. Below is a screenshot of my profile,
which is at https://github.com/AnnikaLevesque. The username is for privacy reasons but I have
temporarily added identification information to my account for this assignment.

Screenshots of the code involved is below: (I added lines 69-72 on the first image and lines 84-86
on the second image)

https://github.com/musescore/MuseScore/issues/8964
https://github.com/musescore/MuseScore/pull/13584
https://github.com/musescore/MuseScore/pull/17278
https://github.com/AnnikaLevesque

the object context()->currentNotation() is a pointer to the score that the user has opened, so if it
is nullptr, that means that no score is open. Each Model is an aforementioned module in the
panel, and the persistentSectionList is the list of modules that was previously in the panel when
no element in the score was selected (whether or not a score was open). My modifications made
it so that when the panel is built for "EmptySelection" (i.e. the user isn't selecting anything like a
note or a piece of text to edit their properties), it first checks if a score is open, and if not, the
panel is emptied. Also, since the panel is only updated when the user's selection changes (e.g.
when the user goes from selecting something to not selecting anything), I had to add a check for
if the user closes the score while not selecting anything (because in that edge case, the user's
selection goes from nothing to nothing-- there's no change, even though the program went from
score open to no score open). I didn't write any test cases because my modification was a UI
change, but I did run the included test suite to make sure I didn't break anything, and the results
are in the appendix of this report. I also asked the community for help in the official discord
when I ran into issues (see below):

7. QA strategy: Since my implementation was a UI change, the bulk of my QA was running the
program under various circumstances and making sure the UI behaved as expected. I scoured
the tutorials/wiki/program itself to make sure there was no "tutorial" or "onboarding" process
that would break if I removed the modules from the panels, then I tried various configurations of
opening scores, closing scores, opening multiple scores and closing them one by one vs all at
once, having parts open, etc. I paid attention to the specific behavior of the panel, but also that
there wasn't any lag when opening/closing scores because I don't want my change to noticeably
impact the performance of the program. I also ran the test suite that came with the source code.
I also counted on the project maintainers doing an informal code review of my implementation
because I know that they are very fastidious about these things.

8. QA evidence. Below are screenshots from my manual testing. Note the differences in the left
panel.

The output of the built-in test suite is in the appendix. The "failed" tests were all unrelated to the
file that I had modified, so I felt it was safe to assume they were not a result of my code. My first
attempt passed the continuous integration tests except for the style check, so a project
maintainer let me know what the issue was and I fixed it on a subsequent commit:

9. Plan updates. I originally intended to make the panel completely disappear when no score was
open, but upon further inspection of the program layout, I realized that wasn't the best
approach; one guiding philosophy of MuseScore is to allow the user to customize the UI layout
as much as possible, so panels can be dragged and dropped in different locations and many
buttons can be shown or hidden at will. A project maintainer had mentioned that the palettes
panel should remain even when there is no score to allow the user to customize it, and it is for
this reason that I decided the properties panel should also remain; the user should be able to
drag and drop it as needed. However, the buttons that didn't have any function could be
removed. That being said, I would have liked to disable the buttons (see section 5 with the task
description) instead of remove them entirely, but I could not figure out the code to make that
happen, so I settled for having the modules disappear instead. The amount of time and effort
each sub-task took in the timeline I proposed in HW6a was mostly accurate, except I over-
estimated the time it would take to learn the project code style guidelines because there were
few that pertained to my task. The biggest deviation was that instead of spreading the sub-tasks
throughout April, I ended up having to complete all of it over the course of 2 days (April 18 and
19), during which I spent about 3 hours figuring out administrative details like how to compile
and run changes, how to submit a pull request, etc., 6 hours reading and learning how the code
was structured (in particular, the panel used to be named "inspector" instead of "properties", so
it took me a while to learn I had to look for "inspector" in the source code to modify the
"properties" panel), and about 4 hours implementing the change, testing it, and trying different
options (e.g. removing the buttons one by one vs as a whole module). The process was relatively
straightforward, likely because of my familiarity with the software and the clear requirements
due to the previous attempt at fixing the issue (as mentioned in HW6a), but the timeline was
severely truncated due to time conflicts with other classes, which was an unanticipated risk. I did
not expect the GEO strike to impact my classes as heavily as it did, since most of my classes do
not have GSIs.

10. Your experiences and recommendations: Overall I feel a great sense of accomplishment at being
able to contribute to a program that has helped me out tremendously in the past and has come
a long way since I last used it. It was really intimidating to work on a large code base that I was
not familiar with, but since the Discord server was very active, I was able to get very quick
support on things like compiling, finding relevant sections in the source code, etc. If it weren't for
that quick communication, I would've had a lot more trouble (for example, the comment that a
project maintainer gave that explained why I was failing the code style check). I agree with the
recommendation that students choose a project that is very active.

o Even with all the support I received, it was very difficult to figure out how to get all the
dependencies I needed, compile and run the code, then compile and run changes, etc.
The instructions for doing so were only partially complete, with an out of date version
called the "developer's handbook" (https://musescore.org/en/handbook/developers-
handbook) and an incomplete up to date version called the "contribution wiki"
(https://github.com/musescore/MuseScore/wiki/Set-up-developer-environment). For
example, I first tried to use Qt Creator as my IDE as suggested by the developer's
handbook, but only after wasting a few hours trying to make it work, I found out in the
Discord that Qt Creator is no longer compatible with the current version of MuseScore,
and I should switch to Visual Studio instead for Windows development. Then when I
followed the Visual Studio instructions, it said that I should only build the INSTALL
project (one of the Visual Studio projects that came with the source code) once, but
after asking around again I found out that it needs to be rebuilt with every modification
to the source code. There was also a whole mess with installing packages in various

https://musescore.org/en/handbook/developers-handbook
https://musescore.org/en/handbook/developers-handbook
https://github.com/musescore/MuseScore/wiki/Set-up-developer-environment

terminals that thankfully only needed to happen once because I still don't understand
how it works.

o On the bright side, the fact that such issues are part of the previous homeworks
assigned in EECS481 (i.e. getting a program to compile and work in a given developer
environment) did help me get over those hurdles. In class we mentioned how
documentation is an important but often overlooked part of software development, and
I felt that keenly as I tried to piece together instructions from various sources just to get
the program running, which presented a huge barrier to entry for new open-source
contributors. I know it's not in the spirit of the homework, but I felt like what this project
in particular needed help with was not necessarily programming, but documentation,
translation, and many other tangential jobs that would greatly speed up development.
Maybe in the future there could be some assignment asking students to help with these
tasks.

o I was very surprised by how promptly members of the community responded to my
questions both in the Discord server and on GitHub. I knew that the community was
active, but since I had intentionally chosen an issue that wasn't too high on the priority
list (to prevent it from getting sniped by another developer), I didn't quite expect to get
such prompt responses while I was working on it. There were also responses directly
from community leaders like Jojo-Schmitz (see screenshots in previous sections), who
has been active in development since MuseScore3 at the latest (the current release is
MuseScore4). I felt really welcome and supported by the community, and it makes me
glad I chose this project to do this homework on.

o I also think it helped that I chose a project that had recently gone through a major
overhaul to clean up a lot of technical debt. Since MuseScore was an open-source
project to begin with, it had accumulated a lot of small, often unconnected contributions
over the years, and when Ultimate Guitar acquired the project and released
MuseScore4, a ton of the changes were just code refactoring, which made the code base
really approachable to new contributors. Now that MuseScore has full-time paid project
maintainers, it seems like the technical debt won't ever get as bad as it used to
(although judging by a lot of the complaints on Discord, there are still some performance
issues carried over from MuseScore3), which really shows the importance of some kind
of central vision and leadership in open-source projects. This may not apply to every
project, but I think it can often be helpful to have people working on a project that
understand the code base more deeply than the average community contributor, and
can lead (or even implement themselves) the kind of large-scale revisions/refactoring
that are sometimes needed.

o In terms of task chosen, I'm glad I chose one that was relatively quick and easy to
implement, since as I suspected, the vast majority of the time was spent familiarizing
myself with the code base and figuring out how to implement any kind of change at all.
That being said, I do think it was difficult to find evidence of QA for the homework
assignment because my task wasn't one that lended itself to subtle bugs that could be
teased out. Either the buttons appeared or they didn't. I did find one edge case where
the user closed the score while not selecting anything (as described in previous
sections), but that was about the extent of the information I learned from QA. Since that
is such a large part of the class, it made it difficult to show my understanding of the
material. If I were to do it again, I would perhaps choose another task that helps me
show that more clearly.

o I also struggled to find ways to show requirements elicitation. One thing I think this
project does very well is be very explicit and specific with what each issue is about;

in the original issue submission, the description of the problem was very clear, as was
the desired behavior (perhaps because it was submitted by a contributor, someone who
understands MuseScore deeply and can describe things in a way easily understood by
other contributors). This was a tremendous help in me understanding what the task was,
and I didn't feel a need to ask clarifying questions because it seemed very clear already.

similarly, the comments on the issue further clarified the issue in terms of what the root
of the problem was and the correct approach to solving it. Also, I was fortunate enough
to have someone else already attempt (and fail) to solve the problem, so I had an
example of what not to do as reference. The comments on that pull request were also

very informative:

so in the end, I didn't see a way to prove my understanding of requirements elicitation,
because any questions I came up with would just be wasting the project maintainers'
time. I'm sure that if I spent more time looking, I could find a less well-defined issue to
work on, but almost all the issues in the MuseScore project were very well formatted
and when they weren't, the project maintainers themselves were quick to ask and
comment on the GitHub page (often within 24 hours). I think this is a result of having
very dedicated developers and a community that may be more technically savvy than
the average userbase. As mentioned previously, MuseScore is the first free music
notation software that truly has all the functionalities any composer would need, so
many composers and musicians are used to using their own programming/technical
skills to make the other (less functional) alternatives work. Even when I used MuseScore,
before I learned any programming or computer science, I had to learn on YouTube and
forums how to make workarounds for some of the things I wanted to include in my
sheet music, and I think that spirit has lingered even as MuseScore becomes a more
user-friendly program. Even so, for the sake of completing this homework, that did make
the report more difficult to write.

o I really think that MuseScore is one of the easiest open-source projects to contribute to,
and I would really recommend it for students in future semesters (not only because I am
fond of the project and want more people to help it grow). There are plenty of tasks
(such as the one I did for this homework) that don't require any background in music or
composition, although such a background would probably help students trying to
contribute to MuseScore. MuseScore is even one of the projects that has been selected
for Google's Summer of Code
(https://summerofcode.withgoogle.com/programs/2023/organizations/musescore)
starting 2022, which is a good opportunity for students and beginner developers.

11. Advice for future students: One thing that really helped me in this class was having a Discord
server (or some other kind of group communication) that would ping students about upcoming
due dates, especially the pop quizzes that appear on Gradescope.

12. I am willing to let future students see my materials.

Appendix - Running test results:

Rebuild started...
1>-- Rebuild All started: Project: ZERO_CHECK, Configuration: RelWithDebInfo x64 --
1>Checking Build System
2>-- Rebuild All started: Project: RUN_TESTS, Configuration: RelWithDebInfo x64 --
2>Test project C:/Users/jingy/MuseScore/msvc.build_x64
2> Start 1: global_tests
2> 1/17 Test #1: global_tests***Failed 0.78 sec
2> Start 2: accessibility_tests
2> 2/17 Test #2: accessibility_tests Passed 0.17 sec

https://summerofcode.withgoogle.com/programs/2023/organizations/musescore

2> Start 3: audio_test
2> 3/17 Test #3: audio_testExit code 0xc0000135
2>***Exception: 0.01 sec
2> Start 4: draw_tests
2> 4/17 Test #4: draw_tests Passed 0.17 sec
2> Start 5: mpe_test
2> 5/17 Test #5: mpe_test Passed 0.18 sec
2> Start 6: ui_tests
2> 6/17 Test #6: ui_tests Passed 0.44 sec
2> Start 7: diagnostics_tests
2> 7/17 Test #7: diagnostics_tests Passed 1.33 sec
2> Start 8: engraving_tests
2> 8/17 Test #8: engraving_tests***Failed 248.83 sec
2> Start 9: iex_bb_tests
2> 9/17 Test #9: iex_bb_tests Passed 0.67 sec
2> Start 10: iex_braille_tests
2>10/17 Test #10: iex_braille_tests***Failed 2.87 sec
2> Start 11: iex_bww_tests
2>11/17 Test #11: iex_bww_tests Passed 0.65 sec
2> Start 12: iex_capella_tests
2>12/17 Test #12: iex_capella_tests***Failed 10.03 sec
2> Start 13: iex_midi_tests
2>13/17 Test #13: iex_midi_tests Passed 0.62 sec
2> Start 14: iex_musicxml_tests
2>14/17 Test #14: iex_musicxml_tests***Failed 23.98 sec
2> Start 15: iex_guitarpro_tests
2>15/17 Test #15: iex_guitarpro_tests***Failed 54.69 sec
2> Start 16: plugins_tests
2>16/17 Test #16: plugins_tests Passed 7.73 sec
2> Start 17: project_test
2>17/17 Test #17: project_test Passed 0.26 sec
2>
2>59% tests passed, 7 tests failed out of 17
2>
2>Total Test time (real) = 353.52 sec
2>
2>The following tests FAILED:
2> 1 - global_tests (Failed)
2> 3 - audio_test (Exit code 0xc0000135)
2> 8 - engraving_tests (Failed)
2> 10 - iex_braille_tests (Failed)
2> 12 - iex_capella_tests (Failed)
2> 14 - iex_musicxml_tests (Failed)
2> 15 - iex_guitarpro_tests (Failed)
2>Errors while running CTest
2>Output from these tests are in:
C:/Users/jingy/MuseScore/msvc.build_x64/Testing/Temporary/LastTest.log
2>Use "--rerun-failed --output-on-failure" to re-run the failed cases verbosely.
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: The command "setlocal
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: "C:\Program Files\Microsoft Visual
Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin\ctest.e
xe" --force-new-ctest-process -C RelWithDebInfo

2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: if %errorlevel% neq 0 goto :cmEnd
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: :cmEnd
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: endlocal & call :cmErrorLevel %errorlevel% & goto :cmDone
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: :cmErrorLevel
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: exit /b %1
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: :cmDone
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: if %errorlevel% neq 0 goto :VCEnd
2>C:\Program Files\Microsoft Visual
Studio\2022\Community\MSBuild\Microsoft\VC\v170\Microsoft.CppCommon.targets(159,5):
error MSB3073: :VCEnd" exited with code 8.
2>Done building project "RUN_TESTS.vcxproj" -- FAILED.
========== Rebuild All: 1 succeeded, 1 failed, 0 skipped ==========
========== Rebuild started at 8:43 PM and took 05:54.594 minutes ==========

