Margaret Wozniak
margwoz@umich.edu
EECS 481

12/2/2025

HW 6b Report - Hydrant

Name and Uniquname:

This report is being written and submitted by Margaret Wozniak, margwoz@umich.edu. The

purpose of this report is to present an open source GitHub project that I contributed to as per the
EECS 481 HW6b specifications.

Selected Project:

In homework 6a, I originally selected the OpenMetadata project on GitHub to contribute to.
However, after spending roughly two and a half weeks working on my selected task for the
project, my local build, which was previously working, began to fail. I lost the ability to build the
UI frontend in developer mode, along with all of my work towards my task. I reached out to the
support channel in the OpenMetadata Slack regarding my issue and was told that there was
nothing they could do as the UI wasn’t officially supported on Windows/WSL (Figure 1). While
it was suggested that I instead build in a native Linux environment, I was unable to follow this
advice as I don’t have access to a second virtual machine in which I can run a native Linux
environment. Additionally, I encountered the same errors using the Docker deployment. At this
point, I decided to pivot to a different open source project in the interest of time and feasibility,
as my original task was to implement and integrate a new feature for the UI.

9 replies

[. openmetadata-support APP Sep 17th at 3:48 AM
Thanks for reaching out to OpenMetadata Community. We will respond shortly. In the meantime, if you haven't
yet, we'd really appreciate it if you could star our project on GitHub at It's a
quick and easy way to show your support. Please let your team know about the same. This helps the community
and the project immensely.

OpenMetadata does not officially support building the Ul on Windows/WSL
environments, and this type of file/rename error is a known issue in such setups. The
recommended approach is to use a native Linux or Mac environment for building the Ul, or
use the provided Docker-based deployment for Windows, which does not require building

from source. If you must use WSL, consider running the Docker deployment instead of
building the Ul manually.

If you need to build from source on Windows/WSL, there is no documented solution for
this error—please wait for further assistance from the team.

Sources:
L]

Figure 1. OpenMetaData response

mailto:margwoz@umich.edu

After doing more research into open source projects, [ultimately decided to contribute to the
Hydrant project on GitHub. The Hydrant project aims to create and maintain a semester planning
app similar to Atlas but for MIT courses. The project has three main components: scraping,
parsing, and displaying. These three components work across the front and back end in order to
collect course information, modify the format of the information to match the expected format of
a human readable schedule, and properly display the courses for students to use and manipulate
within a schedule. The Hydrant project is used internally at MIT and is written primarily in
TypeScript (78.7%) and Python (19.4%). The project can be found here.

Social Good Indication:

This project does not contribute to social good.

Project Context:

As University of Michigan students with access to applications like Atlas, planning future
semesters is easy, convenient, and painless. On the other hand, for students at MIT, who were
lacking a schedule building application, planning future semesters was often stressful,
inconvenient, and painful. In 2019, MIT student CJ Quines (‘23) set out to resolve this issue and
created the Hydrant project, an open source schedule builder designed specifically for MIT. The
Hydrant application scrapes the MIT course guide, parses all the information gathered to build an
internal database of courses, and then allows students to interact with the database through the
Hydrant website. The website displays a calendar that can be populated with courses which can
be selected from a scrolling list of classes. The list of classes can be sorted by class number,
rating, credit hours, and name. Additionally, the website provides students with the option to
export the calendar and pre-register for classes. Hydrant is open to all users, regardless of MIT
enrollment, but the options to export calendars and pre-register for classes require an MIT
student login to use. Hydrant has no competition and doesn’t have a “business” model in the
traditional sense. Hydrant was created by and is maintained by members of the MIT Student
Information Processing Board, an organization that consists of student volunteers dedicated to
working in service of the broader MIT community. In recent years, the project has been opened
to the GitHub open source community to allow anyone interested in computing to contribute to
the project. The Hydrant website can be found here.

Project Governance:

The Hydrant project governance is overseen by members of the MIT Student Information
Processing Board, and all governance is conducted exclusively within the GitHub repository. At
the beginning of this project, I got involved with Hydrant by simply commenting on an open
issue and asking to work on it. Almost immediately, one of the project maintainers responded to
my comment (Figure 2). His response was very informal, and the communication style was very

https://github.com/sipb/hydrant
https://hydrant.mit.edu/

reminiscent of casual conversation rather than professional interactions. While working on the
issue I claimed, I had no interaction with the project maintainers and I was not required to check
in with maintainers at any point. Additionally, the only guidelines (Figure 3) for developers were
to not introduce any new technologies to the project, and there was no “contribution guide” like
the ones you might find in some repositories. Once I had completed my task, I was free to submit
a pull request without doing any kind of quality assurance, although I did do my own quality
assurance anyways. After submitting my pull request, one of the maintainers reviewed my code,
ran some regression and integration tests, but required nothing from me. Once my code passed
the internal tests, it was merged to the repository without any further communication or
requirements elicited from me. Overall, the governance and communication for the Hydrant
project was very informal, which was expected given that a group of students maintain the
project.

margwoz 5 Contributor

Hi, if nobody is working on this issue I'd love to try to fix the bug. Please let me know what | need to do in order to get involved in
this project, thanks!

dtemkin1 5 days ago Collaborator = Author

Go for it @margwoz ! Feel free to make a PR and ping either me or @psvenk to review it @ [l

Figure 2. Claiming an issue within Hydrant

Development notes

Architecture
I'want to change...

o ..the data available to Hydrant.
© The entry pointis scrapers/update.py .
This goes through the client loader in src/routes/Index.tsx , which looks for the data.
The exit point is through the constructor of state in src/lib/state.ts .
o .the way Hydrant behaves.
© The entry pointis src/lib/state.ts .
The exit point is through src/routes/Index. tsx , which constructs hydrant and adds it to a reusable
context.
e ..the way Hydrant looks.
The entry point is src/routes/Index.tsx .
o We use , Ul as our component library. Avoid writing CSS.
e ..routes available in Hydrant.
© Routes are stored in src/routes.ts and can be modified there.

© Run npm run typecheck to make sure route types are still ok once you're done

Technologies

Try not to introduce new technologies that must be separately understood to keep this mostly future-proof. If you
introduce something, make sure it'l last a few years. Usually one of these is a sign it'l last:

* some MIT class teaches how to use it
e.g. web.lab teaches React, 6.102 teaches Typescript

e it's tiny and used in only a small part of the app
e.g. msgpack-lite is only used for URL encoding, nanoid is only used to make IDs

e it's a big, popular, well-documented project that's been around for several years
e.g. FullCalendar has been around since 2010, Chakra Ul has a large community

Figure 3. Hydrant contributor guidelines

Alternatively, while working on the OpenMetadata project I found the project governance to be
much more formal. Before any issue is claimed, OpenMetadata strongly encourages contributors
to join the Slack channel. They then check in with each new member of the Slack channel to
encourage them to get involved within the OpenMetadata community (Figure 4). Once you begin
to claim issues, you aren’t officially working on something until project maintainers assign the
task to you. If you begin to work on an issue that is then assigned to someone else, you must get
permission from the assignee to contribute to the issue. Additionally, when submitting a pull
request, the review process is tedious and takes multiple project maintainers to approve a pull
request. Similarly, in order to submit a pull request you must include tests for the changes you
made. I found it very interesting to compare this governance to the Hydrant governance, as I feel
that it highlights the differences between projects used in industry by professionals and projects
used in academia by students. After working with both types of project governance, I found that I
preferred the more informal governance as it was a more familiar management style to me.
However, I can see the advantages of having a formal governance process in place for larger
projects. The formal governance makes it easier to keep track of who is working on what, and
allows for OpenMetadata maintainers to have specific points of contact for each issue, rather
than having to track down multiple uncoordinated contributors.

Wednesday, November 5th ~

@ Nick Acosta ©2 11:09 AM
é Hi @Margaret Wozniak,

Welcome to OpenMetadata! g I'm glad you are here!!

We just wrapped our forward-looking exploration into the possibilities Al will bring in
managing and understanding data at Collate:Reimagine! You can catch the recording :
I'd love to know what you think! Collate also recently raised funding to accelerate
OpenMetadata growth!

Please feel free to introduce yourself in , and let us know if you need any
help in the channel and be sure to explore the OpenMetadata project on

It'd be great to introduce you to our community! My name is Nick Acosta, and | am a
Developer Advocate at Collate. Please schedule some time for us to meet at

Figure 4. OpenMetadata invite to get involved in the community

Task Description:

As previously mentioned, I was unfortunate enough to have to switch projects between HW6a
and HW6b. Included with this was switching tasks between assignment parts. My new task after
switching to the Hydrant project was to fix a parsing error as indicated by issue #254 within the

GitHub repository. This issue pertains to a class time format used exclusively by the Sloan
School of Management in the upcoming semester that can’t be properly parsed using the current
parsing functions. My task was to debug this parsing error and implement the necessary changes
within the parsing functionality such that these classes could be properly parsed and added to the
database. Issue #254 where this buggy behavior is reported can be found here.

After being assigned to the issue, I began my task by building a baseline comprehension for how
the scraping and parsing functions worked. In order to do this, I first went through the files
included in the scrapers folder of the repository and read their contents and any comments left
regarding the functionality. After reading through all the files, I then collected courses from the
MIT course guide (Figure 5) for testing purposes. While collecting courses, I placed a specific
emphasis on collecting courses that differed in offering type (Lecture, Recitation, Lab,
Discussion), days offered (MTWRF), and time slots offered (AM-AM, AM-PM, PM-PM). Once
I had collected sixteen courses, including the known buggy course from Issue #254, I placed
breakpoints within the main parsing file, fireroad.py, and used the VSCode debugger to manually
step through the parsing process for several non-buggy courses. The goal of manually stepping
through the parsing process was to understand how each parsing function received and modified
course information in non-buggy courses in order to diagnose the issue within the buggy courses.
Once I felt I had a solid understanding of the parsing process, I then set the breakpoints to only
trigger for the buggy course indicated in Issue #254 and manually stepped through the code until
I hit the ValueError raised in Issue #254. Once I hit this error, I noticed that the error wasn’t
caught and instead propagated out to the main function, causing a valid course to be removed
from the database on the grounds that it was reported by the ValuError as incomplete. Based on
this behavior, I decided that error handling was faulty, and upon further inspection of the error
handling and the error raising behavior, realized that the code was raising a ValueError and was
looking for a KeyError. I changed the error handling to look for a ValueError instead. Please see
the Quality Assurance section of this paper for details regarding the quality assurance steps taken
after making this change. Below is the program output when the full program was run before my
change (Figure 6) and after (Figure 7).

https://github.com/sipb/hydrant/issues/254

mIT
REGISTRAR’S OFFICE

Registrar Home | Registrar Search

MIT Course Picker | Hydrant

Home | Subject Search | Help | Symbols Help | Pre-Reg Help | Final Exam Schedule | My Selections

Course 1: Civil and Environmental Engineering

IAP/Spring 2026

Course 1 Home CI-M Subjects for Undergraduate Majors IAP only Evaluations (Certificates Required)

@ | 1.00-1.149 | 1.150-1.499 | 1.50-1.999 plus UROP and Thesis | I

Fundamentals

1.00 Engineering Computation and Data Science

V&R

(Subject meets with 1.001)

Prereq: Calculus I (GIR) and ((6.100A and 6.100B) or (6.100L and 16.C20))
Units: 3-2-7

Lecture: MIV9.30-11 (1-390) Lab: F9-11 (1-390)

Presents engineering problems in a computational setting with emphasis on data science and problem abstraction. Covers
exploratory data analysis and visualization, filtering, regression. Building basic machine learning models (classifiers,

decision trees, clustering) for smart city applications. Labs and pregramming projects focused on analytics problems faced
by cities, infrastructure, and environment. Students taking graduate version complete additional assignments and project

work.
J. Williams
No textbook information available

1.000 Introduction to Computer Programming and Numerical Methods for Engineering

Applications

YR
Prereq: None. Coreq: 18.03
Units: 3-2-7

Presents the fundamentals of computing and computer programming (procedural and object-oriented pregramming) in an
engineering context. Introduces logical operations, floating-point arithmetic, data structures, induction, iteration, and
recursion. Computational methods for interpolation, regression, root finding, sorting, searching, and the solution of linear
systems of equations and ordinary differential equations. Control of sensors and visualization of scientific data. Draws
examples from engineering and scientific applications. Students use the Python programming environment to complete

weekly assignments.
R. Juanes

Figure 5. MIT course catalog

=== Update fireroad data (pre-semester) ===
Can't parse schedule 15.089: ValueError('Invalid
Got 873 courses

Skipped 6866 courses that are not offered in the

=== Update fireroad data (semester)

Can't parse schedule 15.089: ValueError('Invalid
Got 4226 courses

Skipped 2713 courses that are not offered in the
=== Update catalog data ===

Figure 6. Program output pre-fix

timeslot W, 11,
IAP term
timeslot W, 11, True')

spring term

margwoz@MSI : $ python3 -m scrapers

=== Update fireroad data (pre-semester) ===

Got 873 courses

Skipped 6066 courses that are not offered in the IAP term
=== Update fireroad data (semester) ===

Got 4226 courses

Skipped 2713 courses that are not offered in the spring term
=== Update catalog data ===

Scraping page: mla.html

Scraping page: milb.html

Scraping page: mlc.html

Figure 7. Program output post-fix

Submitted Artifacts:

For my task, I submitted the following artifacts: the change made to the code (Figure 8), the unit
tests I created for quality assurance purposes (Figure 9), and the pull request submitted to the
Hydrant repository (Figure 10). The pull request, which includes both artifacts, can also be found
here.

, time_1is_pm

except ValueError:

Figure 8. Codebase change made

https://github.com/sipb/hydrant/pull/255

fireroad.py M

import

sys.path.append(os.path.dirname(_ file))
from scrapers.fireroad import parse timeslot

test_am_am():

Examp 1efj11.

length = parse_timeslot("M", "18-11
start =
length ==

test_pm_pm():

rt, length = parse_timeslot("T",
t start == 48
length == 4

test_am_pm():

rt > PM

test_failing input_ from_issue 254():

length = parse_timeslot("W",

Figure 9. Unit tests written

Fix to issue Time parsing #254 #255

IS Mergedd) dtemkinl merged 7 commits int from

) Conversation 1 -o- Commits 7 F) Checks 7

. margwoz commented 4 days ago

| changed the except type in the fireroad.py parse_timeslot function error handling. The function was orignally looking for a "
KeyError raised by find_timeslot, but find_timeslot raises a ValueError, so | modified the except type to be a ValueError to match the . psvenk
exception raised. After making this change, I reran all tests (activity, colors, dates, utils) and created python unit tests specifically

for parse_timeslot (parse_timeslot_test.py). The code passes all pre-exisiting tests along with all unit tests. @dtemkin1, @psvenk,

please feel free to review this pull request, and if there is anything that needs to be modified let me know!
No one assigned

£ margwoz adde commits 5 d ago Labels

None yet

- @ wpdate utils
- @u
. @
. @

Projects

® ¥ dtemkinl requ view from dtemkin1 and psvenk 4 days ago

Figure 10. Pull request submitted to Hydrant

Quality Assurance Strategy:

For my task, I chose to use regression testing and unit tests for quality assurance. While
completing my task, I changed the error handling to catch a ValueError instead of a KeyError.
Due to the nature of this change, I felt that [needed to ensure that all previous tests still passed
and that [hadn’t inadvertently caused more errors by removing the logic that was previously in
place to catch them. This led to the decision to use regression testing as one of my quality
assurance activities, as running regression testing could show me any previously passing tests
that were now failing due to the changed error handling. Along with regression testing, I decided
to use unit tests to ensure that all expected use cases were handled properly. Before I had worked
through the codebase to diagnose the issue, I originally believed that Issue #254 was the result of
a mishandled edge case for a class that started in the morning and ended in the afternoon. While I
was fairly certain that by fixing the mismatched exception types the edge case would be handled
correctly by the code run when the exception was caught, I wanted to be able to definitively say
that it was. In order to do this, I wrote unit tests for the three time slot cases, AM-AM, AM-PM,
and PM-PM. The main motivation for unit testing was that it would allow me to isolate the three
time slots and the parse_timeslot function in order to ensure that the previously buggy
parse_timeslot function was behaving as intended for all use cases. The unit tests were
constructed by creating a realistic time slot for each use case, calling parse_timeslot, and
asserting that the parse_timeslot returned the correct timeslot for each case. Once I had these
tests written, I ran both the regression tests and unit tests, and only submitted a pull request once
I had confirmed that I was passing all regression and unit tests.

Quality Assurance Evidence:

Regression Testing

Before I made any changes to the Hydrant codebase, I ran all existing tests (stored under the tests
folder of the repository) in order to get a baseline for future regression testing. Note that in the
original run (Figures 11,12,13), eight tests relating to the front end failed. This was expected as I
didn’t build the front end for a purely backend task. After making my change to the codebase,
these same eight tests failed, but all other tests passed (Figures 14,15,16). As such, the tasks
passing before the change still passed, and the tests pertaining to something I did not build still
failed. Additionally, after submitting my pull request, my code was run through regression tests
by the Hydrant maintainers and passed all tests (Figure 17), including the front end tests.

h

tests/colors.test.ts
COLOR_SCHEME_LIGHT
COLOR_SCHEME_DARK
COLOR_SCHEME_LIGHT_CONTRAST
COLOR_SCHEME_DARK_CONTRAST

brightness === @
@ < brightness < 128
brightness === 128
128 < brightness < 256
brightness === 256
-symbol hex with #
-symbol hex without #
-symbol hex with #
-symbol hex without #
-symbol hex with #
-symbol hex without #
invalid hex code
tests/dates.test.ts
parseUrlName
urlName is null
urlName is empty string
urlName is equal to “latest"
getUrlNames(latestUrlName) includes urlName
EXCLUDED_URLS includes urlName, urlName includes nextUrlName
unrecognized term
fallback to latest term
Term.constructor
Term.fullRealYear
Term.semesterfull
Term.semesterFullCaps
Term.niceName
Term.urlName
Term.toString
secondHalf false, startDay undefined, slot.weekday matches
secondHalf false, startDay undefined, slot.weekday doesn't match
secondHalf false, startDay defined, slot.weekday matches
secondHalf false, startDay defined, slot.weekday doesn't match
secondHalf true, startDay undefined, slot.weekday matches
secondHalf true, startDay undefined, slot.weekday doesn't match
secondHalf true, startDay defined, slot.weekday matches
secondHalf true, startDay defined, slot.weekday doesn't match
firstHalf false, endDay undefined, slot.weekday matches
firstHalf false, endDay undefined, slot.weekday doesn't match
firstHalf true, endDay undefined, slot.weekday matches
firstHalf true, endDay undefined, slot.weekday doesn't match
firstHalf false, endDay defined, slot.weekday matches

Figure 11. Pre-fix failing tests

Term.urlName

Term.toString
secondHalf false, startDay undefined, slot.weekday matches
secondHalf false, startDay undefined, slot.weekday doesn't match
secondHalf false, startDay defined, slot.weekday matches
secondHalf false, startDay defined, slot.weekday doesn't match
secondHalf true, startDay undefined, slot.weekday matches
secondHalf true, startDay undefined, slot.weekday doesn't match
secondHalf true, startDay defined, slot.weekday matches
secondHalf true, startDay defined, slot.weekday doesn't match
firstHalf false, endDay undefined, slot.weekday matches
firstHalf false, endDay undefined, slot.weekday doesn't match
firstHalf true, endDay undefined, slot.weekday matches
firstHalf true, endDay undefined, slot.weekday doesn't match
firstHalf false, endDay defined, slot.weekday matches
firstHalf true, endDay defined, slot.weekday matches
firstHalf false, endDay defined, slot.weekday doesn't match
firstHalf true, endDay defined, slot.weekday doesn't match
has matching holiday, tuesday on monday schedule
has matching holiday, not monday schedule
has non-matching holiday, tuesday on monday schedule
has non-matching holiday, not monday schedule
no holidays, tuesday for monday schedule
no holidays, not monday schedule
slot.weekday Monday, this.mondaySchedule defined
slot.weekday not Monday, this.mondaySchedule defined
slot.weekday Monday, this.mondaySchedule undefined
slot.weekday not Monday, this.mondaySchedule undefined

Slot.fromSlotNumber

Slot.fromStartDate

Slot.fromDayString

Slot.add

Slot.onDate

Slot.startDate

Slot.endDate

Slot.weekday

Slot.dayString

Slot.timeString

urlName EARLIEST_U

urlName is before excluded urls

urlName is excluded

urlName is after excluded urls

tests/utils.test.ts
tests/activity.test.ts

Failed Tests 8

Figure 12. Pre-fix failing tests

2 passed
141 passed

Figure 13. Pre-fix failing tests summary

tests/colors.test.ts
COLOR_SCHEME_LIGHT
COLOR_SCHEME_DARK
COLOR_SCHEME_LIGHT_CONTRAST
COLOR_SCHEME_DARK_CONTRAST

brightness === @

@ < brightness < 128

brightness === 128

128 < brightness < 256

brightness 256

6-symbol with #

6-symbol without #

5-symbol with #

5-symbol without #

3-symbol with #

3-symbol without #

invalid hex code

tests/dates.test.ts
parseUrlName

urlName is null

urlName is empty string

urlName is equal to "latest"

getUrlNames (latestUrlName) includes urlName

EXCLUDED_URLS includes urlName, urlName includes nextUrlName

unrecognized term

fallback to latest term

Term.constructor

Term.fullRealYear

Term.semesterFull

Term.semesterFullCaps

Term.niceName

Term.urlName

Term.toString
secondHalf false, startDay undefined, slot.weekday matches
secondHalf false, startDay undefined, slot.weekday doesn't match
secondHalf false, startDay defined, slot.weekday matches
secondHalf false, startDay defined, slot.weekday doesn't match
secondHalf true, startDay undefined, slot.weekday matches
secondHalf true, startDay undefined, slot.weekday doesn't match
secondHalf true, startDay defined, slot.weekday matches
secondHalf true, startDay defined, slot.weekday doesn't match
firstHalf false, endDay undefined, slot.weekday matches
firstHalf false, endDay undefined, slot.weekday doesn't match
firstHalf true, endDay undefined, slot.weekday matches
firstHalf true, endDay undefined, slot.weekday doesn't match
firstHalf false, endDay defined, slot.weekday matches

Figure 14. Post-fix failing tests

Term.urlName

Term.toString
secondHalf false, startDay undefined, slot.weekday matches
secondHalf false, startDay undefined, slot.weekday doesn't match
secondHalf false, startDay defined, slot.weekday matches
secondHalf false, startDay defined, slot.weekday doesn’'t match
secondHalf true, startDay undefined, slot.weekday matches
secondHalf true, startDay undefined, slot.weekday doesn't match
secondHalf true, startDay defined, slot.weekday matches
secondHalf true, startDay defined, slot.weekday doesn't match
firstHalf false, endDay undefined, slot.weekday matches
firstHalf false, endDay undefined, slot.weekday doesn't match
firstHalf true, endDay undefined, slot.weekday matches
firstHalf true, endDay undefined, slot.weekday doesn't match
firstHalf false, endDay defined, slot.weekday matches
firstHalf true, endDay defined, slot.weekday matches
firstHalf false, endDay defined, slot.weekday doesn't match
firstHalf true, endDay defined, slot.weekday doesn't match
has matching holiday, tuesday on monday schedule
has matching holiday, not monday schedule
has non-matching holiday, tuesday on monday schedule
has non-matching holiday, not monday schedule
no holidays, tuesday for monday schedule
no holidays, not monday schedule
slot.weekday Monday, this.mondaySchedule defined
slot.weekday not Monday, this.mondaySchedule defined
slot.weekday Monday, this.mondaySchedule undefined
slot.weekday not Monday, this.mondaySchedule undefined

slot.fromSlotNumber

Slot.fromStartDate

Slot.fromDayString

Slot.add

Slot.onDate

Slot.startDate

Slot.endDate

Slot.weekday

Slot.dayString

Slot.timeString

urlName === EARLIEST_URL

urlName is before excluded urls

urlName is excluded

urlName is after excluded urls

tests/utils.test.ts
tests/activity.test.ts

Failed Tests 8

Figure 15. Post-fix failing tests

2 passed (4
141 passed
11:53:18

1.48s

Figure 16. Post-fix failing tests summary

o3 "f;—dtemkim merged commit efaae23 into tmain 4 (go Hide details

7 checks passed
() Black
() Prettier
¢ Pylint
() Lint + Typecheck
() Pytest
) Unit tests

() Test for valid JSON output

Figure 17. All checks passing within Hydrant repository

Unit Testing

After making my changes to the Hydrant codebase, I wrote four unit tests, one for each of the
following cases: AM-AM, AM-PM, PM-PM, and one for the known failing input. I then ran

these unit tests using pytest and passed all four (Figure 18).
margwoz@MSI : ¢ pytest -q

4 passed
margwoz@MSI:

Figure 18. Unit tests passing

Plan Updates:

Over the course of this assignment, there were an unexpected number of plan changes. Almost
all of these changes stemmed from the fact that my original task exploded, and I had to switch
both projects and tasks. This added a large amount of extra time to my plan, as I had to repeat the
process of selecting a task, building codebase comprehension, along with actually completing my
new task. Overall, I spent 39.2 hours on this assignment compared to my original estimate of
28.25 hours. As such, the final “what actually happened schedule” is vastly different from the
original planned schedule and is as follows:

11/3 - 11/7

Description: Over the course of this week I selected a project (4 hrs), built the project locally (2
hrs), and wrote the HW 6a report (2hrs).

Total time: 8 hours

11/10-11/14

Description: Over the course of this week I worked on comprehending the OpenMetadata
codebase and learning TypeScript.
Total time: 8 hrs

11/17 - 11/21

Description: Over the course of this week I began working on the OpenMetadata feature
frontend. Halfway through the week, my project exploded and I argued with the maintainers
about my lost work and the build no longer compiling (1 hr), tried to get the build re-running
(3hrs), gave up on the OpenMetadata project (0 hrs)

Total time: 9 hrs

11/24 - 11/28

Description: Over the course of this week I found a new project (2 hrs), conducted codebase
comprehension for Hydrant (3 hrs), debugged the issue (1.5 hrs), implemented the fix (0.25 hrs),
wrote unit tests (0.25 hrs), ran unit and regression tests (0.1 hrs), and submitted a pull request
(0.1 hrs).

Total time: 7.2 hrs

12/1 - 12/5
Description: Over the course of this week I wrote my HW6b report.
Total time: 7 hrs

Experience and Recommendations:

Original Task Selection - OpenMetadata

In order to complete this assignment, I first had to select a task. This was incredibly daunting, as
I had never contributed to or even explored an open source GitHub project before this
assignment. Additionally, I was very intimidated by the sheer size of the search space as there are
thousands of open source GitHub repositories out there. In an attempt to get some advice and
reassurance, | made a Piazza post (Figure 19), to which Professor Weimer responded (Figure 20)
with some very helpful insights. Along with following his advice, I also found websites such as
Good First Issues and Up for Grabs helpful to narrow the search space for projects. After

spending a decent amount of time looking for projects, I ended up settling on the OpenMetadata
project. I picked this project for several reasons: the strong contributor community, the large
amounts of documentation, and the recent creation of an issue that seemed within the scope of
my abilities. I selected my original task of implementing a new notification icon based on this
issue. While the HW6 spec advises against purely UI tasks due to difficulties to conduct quality
assurance on them, I felt that this task, while Ul centered, was integrated enough with the
backend that there were ample opportunities to conduct quality assurance.

https://goodfirstissues.com/
https://up-for-grabs.net/#/filters?labels=40
https://github.com/open-metadata/OpenMetadata/issues/24171

Feeling Intimidated by HW 6

Updated 1 month ago by Anonymous Gear

Hi,

As I've been looking into open source projects to contribute to, I've found myself feeling somewhat intimidated by this homework. I've never contributed to an open source project before, and have
yet to write code at an "industry” standard. My coding experience has been somewhat limited to just the EECS curriculum, which while intensive, hasn't given me a good grasp on how to navigate
picking a feasible project to contribute to. At this point, | feel very overwhelmed with even picking a project and was wondering if anyone who has more experience with this kind project has any
advice as to how to make the project more approachable. Any advice would be greatly appreciated!

hwé

geat Y o [] o & 75 views

Figure 19. Piazza Post

Instructors’ Answer
Updated 1 month ago by Westley Weimer

It sounds like you're asking for advice from other students, but perhaps | can chime in with some things from a professor perspective:

« You can approach the maintainers of multiple projects and then end up not working with N-1 of them. This is fine. Open source projects are used to people dropping in and out.

« Students with less incoming preparation often succeed on projects that feature more active developer communication (e.g., discord, slack, responding to messages quickly, not being
across the world in another time zone, having multiple active developers).

« Corollary: You can approach multiple projects, reach out to the devs, and then just not go with the projects that do not talk to you quickly enough.

» You suggest that your prior coding experience hasn't given you a good grasp on how to pick a project, but that is the default for this course. EECS 481 assumes no prior course has
required you to pick an open source project. (Indeed, no other UM CSE course has you pick an open source project to contribute to.) On a personal level, you have my sympathies for
feeling a bit underprepared: imposter syndrome strikes us all. Logically, however, HW6 is designed for students in EECS 481 to be able to complete based on only the EECS 481 material:
there is no secret hidden prerequisite that you are missing that everyone else has. (This explanation doesn't change your skills, but it may help you feel more confident in expectations: the
assignment is designed for students like you.)

« Sometimes students feel so overwhelmed that they aren't able to bring themselves to read all of the instructions critically. The webpage gives multiple hints on how to pick a safe project. If
you're not sure you spotted them, | encourage you re-read the text. (It's long, but that's something 481 is trying to give you practice with.) For two concrete hints, double-check the text on

the "golden rule" of project selection, and then read some of the example reports at the bottom until you find one that describes good communication and just pick that if you're panicked

=)

* You can doit!

- Wes

Figure 20. Professor Weimer’s response

Completing the Task - OpenMetadata

After selecting the feature implementation task, I reached out to the project maintainers and
formally asked to be assigned to the issue. After being assigned, I then began the process of
getting my device and myself ready to contribute. This involved joining the OpenMetadata Slack
channel in order to stay in touch with maintainers and other contributors, getting the build set up
locally, and beginning to go through the codebase comprehension process. After joining the
Slack channel, I was directed to the OpenMetadata contributor set up guide, found here, in order
to get a local build running. After following the guide, I was able to get the backend and UI
running locally in developer mode. Once I had everything running, I began the codebase
comprehension process. OpenMetadata is a huge project, so I had to be very selective with which
files I chose to examine and read through. I ran a search for the word notification in order to
narrow down the codebase to files that made references to the existing notification management
system and UI components. This still left about 100 files, so I narrowed it down even further to
files that only existed in the UI components folder of the repository and contained the word
notification in the title. This left about 25 files, which I then started to read through. As I read
through the files, I had to do a lot of research about specific syntax, as most of the code was

https://docs.open-metadata.org/latest/developers/contribute/build-code-and-run-tests

written in TypeScript and React, both of which I’d never used before. Additionally, I had to
spend a lot of time reading documentation in order to understand what each specific function was
doing for the UI. Overall, it took me roughly eight hours to build a baseline understanding of the
notification UI code, TypeScript, and React.

After building this baseline, I then began to work on modifications to the code in order to
complete the feature request. This implementation process required a lot of research into
notification infrastructure within React and different ways to combine style components in order
to get the desired behavior within the OpenMetadata notification icon. Once I had done my
research, I began actually modifying the code to implement the feature. However, about halfway
through my implementation, my laptop force restarted, which in turn force quit my VSCode
instance. When this forced quit occurred, I lost all work in the file I had been working in, as I
hadn’t yet pushed my changes to my forked GitHub. Additionally, when the quit occurred I lost
the ability to locally build the UI part of the OpenMetadata project, which was incredibly
problematic as my entire task revolved around the UI. I reached out to the OpenMetadata
maintainers asking for help getting the build running again, and was told that there was nothing
they could do as the UI build wasn’t officially supported on Windows/WSL architecture (Figure
1). They suggested that I try rebuilding using Docker, but I was unsuccessful in getting this to
work. I spent roughly three hours trying in vain to repeat the steps that let me build the UI the
first time, but was ultimately unsuccessful. At this point, I made the executive decision to pivot
to a different project, as the OpenMetadata project seemed like a lost cause. I debated switching
tasks rather than projects, but ultimately decided against it due to the fact that I had lost trust in
the OpenMetadata maintainers as they had failed to disclose that the UI build wasn’t supported
on certain systems. | felt that that information should have been included in the build guide or
documentation, and at the very least should have been communicated to me when I was assigned
a Ul task to complete.

Starting Over - Hydrant Project and Task Selection

After the failure of the OpenMetadata project, which occurred exactly two weeks and three days
before the HW6b report was due, I was left scrambling for a new project. It again seemed
incredibly daunting to select a new project and task, but for different reasons this time. This time
around, I felt confident in my ability to find a project and task, but was more concerned with the
feasibility of actually being able to complete a task, do quality assurance, and write the report
before the suggested report deadline of 12/4. Additionally, I was worried about being able to
balance this project with two other final projects, a final research paper, and two exams. Based
on these fears and the remaining time left on the project, I decided to modify the project search
space to only include smaller projects that used TypeScript, Python, and C++. Using this search
criteria, I came across the Hydrant project. The Hydrant project stood out to me as it was small,
highly active, written in TypeScript and Python, and had an issue that was opened three hours
before I came across the project. I decided almost immediately that this would be my project, as

it was in languages [was familiar with and had an issue that seemed to be within my ability to
solve in two weeks. I placed a comment asking to be assigned the issue, and two hours after that,
received a greenlight response from the maintainers. This cemented my switch, and I fully
pivoted from OpenMetadata to Hydrant.

Completing the Task - Hydrant

Once I received the green light from maintainers, I immediately started working on my task. To
begin, I pulled the codebase into a local VSCode instance and started reading through files to get
a sense of what the code was actually doing. This experience was very different from the
codebase comprehension I did for OpenMetadata for several reasons. To begin with, Hydrant has
virtually no documentation and no way to quickly and reliably reach maintainers. This made
understanding the code much more difficult, as I had no way to get any kind of explanation for
what the code was doing. Additionally, the parsing functionality within Hydrant is done very
non-intuitively and uses base 34 rather than base 24 for all time slot conversions. I had to figure
this out on my own, which was much harder than figuring out the functionality for various
OpenMetadata functions. However, one strength of Hydrant is that the code base was small
enough that it was feasible for me to place break points and manually step through examples to
see how the parsing functionality worked. Additionally, I had a lot of courses I knew were parsed
correctly, and I was able to access and use those courses as my example courses for my manual
walk-throughs. This allowed me to build a deeper understanding of how the code worked, as I
was able to see at each step of the process how information was being processed. I tend to be a
visual learner, so I found it easier to build my own interpretation and intuition by watching
variables change as they progressed through the program as opposed to reading documentation
written by someone else.

Once I had an understanding of the codebase, actually fixing the issue was rather trivial. In order
to isolate the issue I used my breakpoints and set them to trigger only for the course causing the
ValueError seen in Issue #254. Once the breakpoints triggered, I then walked through the
execution of the buggy input until I reached the buggy behavior. Once I reached this behavior, I
was able to isolate the issue to a pair of functions, one of which called the other and then used
the returned result. I found the exact error being raised in the called function, and then looked at
the error handling in the calling function. In doing so, I found a mismatch between the error type
being raised and the error type being checked for. I then switched the error type being checked
for to match the one being raised and reran the original buggy course, which was now parsed
correctly.

After making the switch in the error handling, I had some suspicions that by changing the error
type being caught, I would have inadvertently caused errors previously being caught to be
missed. This suspicion informed my quality assurance process, and led me to use regression and
unit testing in order to verify my change. As previously discussed in the quality assurance

section of this report, these two metrics were chosen as they allowed me to ensure that the
change made to one function, i.e. one unit, did not reintroduce old bugs and that the unit
functioned as expected in all possible use cases. Once I had passed all regression and unit tests, [
then created a pull request in which I explained the changes I made, why I made them, and the
quality assurance processes [used.

Failure, Flexibility, and Risk in Software Engineering

Over the course of this homework, I learned many valuable lessons about software engineering
in the real world, the most important of which pertained to failure, flexibility, and risk. Going
into this project, I expected things to be difficult, and I expected there to be setbacks; what I did
not expect was complete and total failure. Up until this point in my engineering career, I have
always been able to execute a plan, albeit with some variation, to get to the intended and original
end result. This was the first time that I had to not only deviate from the plan, but abandon the
end goal entirely. This was something that I found very difficult to accept and deal with as I am
someone who does not take kindly to perceived failures. However, I think that from this
“failure”, which technically isn’t even a failure, I learned a very valuable lesson about software
engineering in the “real” world: failure is only a matter of perspective.

When reading the instructions for this assignment, it is never stated anywhere that I had to
complete my task. In fact, it was mentioned numerous times that a very likely outcome was that I
would not complete my task, and that that was entirely okay. Success, as defined by the
instructions, is to simply engage with and document the software engineering process and write a
report on it. However, success as defined by myself, was to complete the original task that I
selected. Depending on which definition of success you use, I either failed or succeeded on this
assignment. Importantly, the only definition that matters is the one in which I succeeded. I think
that engineers have a tendency to internally define success such that success for them is entirely
different from success as defined by the requirements. We have a tendency to want things to go
the way we plan them, and any variation between the imagined result and the actual is perceived
as a failure, even if it objectively isn’t one. Additionally, I think that we tend to struggle with
abstract notions of success. We like numbers, we want to get 100% coverage or an optimized
time complexity, and we forget that, in most cases, these numbers are an upper bound on success,
not a lower. This assignment, with its abstract notion of success, taught me that most software
engineering will be about meeting a set of requirements and that my personal definition of
success, and with it failure, does not matter so long as I meet the requirements set out for me.

Additionally, this taught me that in order to succeed at meeting these requirements, I must let go
of my own internal notions of success and embrace flexibility. This assignment has shown me
that flexibility is imperative in order to succeed in software engineering, as the plan always
changes, primarily as a direct result of risk. When writing the HW6a report, we were asked to
write about risks we might encounter in this project and how we would manage them. In my

report, I accounted for several risks, but failed to account for the only risk I ended up actually
encountering. In my description of nuanced risks, I forgot the most obvious — that the project
itself would no longer be feasible. This risk seemed benign and improbable, and I assumed that
as a competent engineer [had fully accounted for all risks and had effectively come up with
strategies to manage them. Obviously, I did not account for all risks, and as such, had to
scramble and panic midway through the assignment. This oversight taught me that in order to
truly have a successful plan, you have to account for all possible risks, not just the ones that you
find probable. Similarly, it taught me that even when you do plan for all risks, an unexpected risk
can still occur, meaning that in order to be a successful engineer, you need to be able to be
flexible and make decisions on the fly. Overall, it taught me that I should plan on not planning
for everything, and keep an open mindset about potential paths forward through a project. It also
reinforced the importance of risk in the software engineering process.

Recommendations:

After completing this assignment, I have several recommendations for future students. First and
foremost, I would recommend that students start this project early. I started this project with a
little more than a month to complete it, and still ended up feeling panicked about being able to
get it done on time. You will absolutely need more time than you allocated, regardless of your
task exploding or not. Starting early gives you the opportunity to make mistakes and change your
plan, and helps you avoid a situation in which you don’t finish the assignment due to some
unexpected issue. Second, I would recommend that students select projects that are well
documented and have reliable means of communication with the maintainers. Documentation
and communication make the codebase comprehension process exponentially easier, which is the
central part of this assignment. Third, I would recommend that students pick tasks that require
them to use skills they already possess. My original OpenMetadata task was in a language I
didn’t know, doing UI work which I had never done. This made my life much harder than it
needed to be, and I had to spend a lot of extra time building a skill set to be able to complete my
task. The Hydrant task went much smoother because it was in a language I knew and pertained to
parsing functions which I had experience with. Lastly, I would recommend that students embrace
the process while letting go of the result. Most EECS classes exclusively place emphasis on the
final result. They teach students that the only thing that matters is how well your code runs; that
success is measured by how many test cases you pass, the space and time complexity of your
code, and how many bugs your test cases catch. This is how software engineering works in
academia, not how it works in the real world. This assignment aims to introduce you to the
reality of software engineering by placing its emphasis on the process, not the end result. Lean
into the process, as understanding and enjoying it will make you a better software engineer.

Advice for Future Students:

My advice to future students would be this: Do the readings, go to class, and appreciate the
process.

I give my permission to course staff to use my materials for future semesters.

Extra Credit - Pull Request Accepted:

My change was merged into the Hydrant repository on November 25th, 2025. The closed pull
request can be found here.

©) o / hyam

Code () lIssues 31 1) Pullrequests 7 Actions [Projects @ Security Insights

Fix to issue Time parsing #254 #255 it <> Code -
= Merged) dtemkin? 7 t s

Q) Conversation 1

I changed the except type in the fireroad.py parse_timeslot function error handling. The function was orignally looking for a
KeyError raised by find_timeslot, but find_timeslot raises a ValueError, so | modified the except type to be a ValueError to match the @) psvenk
exception raised. After making this change, | reran all tests (activity, colors, dates, utils) and created python unit tests specifically

for parse_timeslot (parse_timeslot_test.py). The code passes all pre-exisiting tests along with all nit tests. @dtemkin1, @psvenk,

please feel free to review this pull request, and if there is anything that needs to be modified let me know!

W5 dtemkint

No one assigned

@)

None yet
G margwoz

None yet

No milestone

pment

ly merging this pull request may close these

© ¥ dtemkin requeste € m dtemkin1 and psvenk 5 days ac

Vg dtemkin1 9o * - aborator |+ A Unsubscribe

Thank you so much for the help! Since we already have a lot of examples in the docstrings, might be best to move the unittests to

Figure 21. Merged pull request

https://github.com/sipb/hydrant/pull/255

