
​Margaret Wozniak​
​margwoz@umich.edu​
​EECS 481​
​12/2/2025​

​HW 6b Report - Hydrant​

​Name and Uniquname:​
​This report is being written and submitted by Margaret Wozniak,​​margwoz@umich.edu​​. The​
​purpose of this report is to present an open source GitHub project that I contributed to as per the​
​EECS 481 HW6b specifications.​

​Selected Project:​
​In homework 6a, I originally selected the OpenMetadata project on GitHub to contribute to.​
​However, after spending roughly two and a half weeks working on my selected task for the​
​project, my local build, which was previously working, began to fail. I lost the ability to build the​
​UI frontend in developer mode, along with all of my work towards my task. I reached out to the​
​support channel in the OpenMetadata Slack regarding my issue and was told that there was​
​nothing they could do as the UI wasn’t officially supported on Windows/WSL (Figure 1). While​
​it was suggested that I instead build in a native Linux environment, I was unable to follow this​
​advice as I don’t have access to a second virtual machine in which I can run a native Linux​
​environment. Additionally, I encountered the same errors using the Docker deployment. At this​
​point, I decided to pivot to a different open source project in the interest of time and feasibility,​
​as my original task was to implement and integrate a new feature for the UI.​

​Figure 1.​​OpenMetaData response​

mailto:margwoz@umich.edu


​After doing more research into open source projects, I ultimately decided to contribute to the​
​Hydrant project on GitHub. The Hydrant project aims to create and maintain a semester planning​
​app similar to Atlas but for MIT courses. The project has three main components: scraping,​
​parsing, and displaying. These three components work across the front and back end in order to​
​collect course information, modify the format of the information to match the expected format of​
​a human readable schedule, and properly display the courses for students to use and manipulate​
​within a schedule. The Hydrant project is used internally at MIT and is written primarily in​
​TypeScript (78.7%) and Python (19.4%). The project can be found​​here​​.​

​Social Good Indication:​
​This project does not contribute to social good.​

​Project Context:​
​As University of Michigan students with access to applications like Atlas, planning future​
​semesters is easy, convenient, and painless. On the other hand, for students at MIT, who were​
​lacking a schedule building application, planning future semesters was often stressful,​
​inconvenient, and painful. In 2019, MIT student CJ Quines (‘23) set out to resolve this issue and​
​created the Hydrant project, an open source schedule builder designed specifically for MIT. The​
​Hydrant application scrapes the MIT course guide, parses all the information gathered to build an​
​internal database of courses, and then allows students to interact with the database through the​
​Hydrant website. The website displays a calendar that can be populated with courses which can​
​be selected from a scrolling list of classes. The list of classes can be sorted by class number,​
​rating, credit hours, and name. Additionally, the website provides students with the option to​
​export the calendar and pre-register for classes. Hydrant is open to all users, regardless of MIT​
​enrollment, but the options to export calendars and pre-register for classes require an MIT​
​student login to use. Hydrant has no competition and doesn’t have a “business” model in the​
​traditional sense. Hydrant was created by and is maintained by members of the MIT Student​
​Information Processing Board, an organization that consists of student volunteers dedicated to​
​working in service of the broader MIT community. In recent years, the project has been opened​
​to the GitHub open source community to allow anyone interested in computing to contribute to​
​the project. The Hydrant website can be found​​here​​.​

​Project Governance:​
​The Hydrant project governance is overseen by members of the MIT Student Information​
​Processing Board, and all governance is conducted exclusively within the GitHub repository. At​
​the beginning of this project, I got involved with Hydrant by simply commenting on an open​
​issue and asking to work on it. Almost immediately, one of the project maintainers responded to​
​my comment (Figure 2). His response was very informal, and the communication style was very​

https://github.com/sipb/hydrant
https://hydrant.mit.edu/


​reminiscent of casual conversation rather than professional interactions. While working on the​
​issue I claimed, I had no interaction with the project maintainers and I was not required to check​
​in with maintainers at any point. Additionally, the only guidelines (Figure 3) for developers were​
​to not introduce any new technologies to the project, and there was no “contribution guide” like​
​the ones you might find in some repositories. Once I had completed my task, I was free to submit​
​a pull request without doing any kind of quality assurance, although I did do my own quality​
​assurance anyways. After submitting my pull request, one of the maintainers reviewed my code,​
​ran some regression and integration tests, but required nothing from me. Once my code passed​
​the internal tests, it was merged to the repository without any further communication or​
​requirements elicited from me. Overall, the governance and communication for the Hydrant​
​project was very informal, which was expected given that a group of students maintain the​
​project.​

​Figure 2.​​Claiming an issue within Hydrant​

​Figure 3.​​Hydrant contributor guidelines​



​Alternatively, while working on the OpenMetadata project I found the project governance to be​
​much more formal. Before any issue is claimed, OpenMetadata strongly encourages contributors​
​to join the Slack channel. They then check in with each new member of the Slack channel to​
​encourage them to get involved within the OpenMetadata community (Figure 4). Once you begin​
​to claim issues, you aren’t officially working on something until project maintainers assign the​
​task to you. If you begin to work on an issue that is then assigned to someone else, you must get​
​permission from the assignee to contribute to the issue. Additionally, when submitting a pull​
​request, the review process is tedious and takes multiple project maintainers to approve a pull​
​request. Similarly, in order to submit a pull request you must include tests for the changes you​
​made. I found it very interesting to compare this governance to the Hydrant governance, as I feel​
​that it highlights the differences between projects used in industry by professionals and projects​
​used in academia by students. After working with both types of project governance, I found that I​
​preferred the more informal governance as it was a more familiar management style to me.​
​However, I can see the advantages of having a formal governance process in place for larger​
​projects. The formal governance makes it easier to keep track of who is working on what, and​
​allows for OpenMetadata maintainers to have specific points of contact for each issue, rather​
​than having to track down multiple uncoordinated contributors.​

​Figure 4.​​OpenMetadata invite to get involved in the community​

​Task Description:​
​As previously mentioned, I was unfortunate enough to have to switch projects between HW6a​
​and HW6b. Included with this was switching tasks between assignment parts. My new task after​
​switching to the Hydrant project was to fix a parsing error as indicated by issue #254 within the​



​GitHub repository. This issue pertains to a class time format used exclusively by the Sloan​
​School of Management in the upcoming semester that can’t be properly parsed using the current​
​parsing functions. My task was to debug this parsing error and implement the necessary changes​
​within the parsing functionality such that these classes could be properly parsed and added to the​
​database. Issue #254 where this buggy behavior is reported can be found​​here​​.​

​After being assigned to the issue, I began my task by building a baseline comprehension for how​
​the scraping and parsing functions worked. In order to do this, I first went through the files​
​included in the scrapers folder of the repository and read their contents and any comments left​
​regarding the functionality. After reading through all the files, I then collected courses from the​
​MIT course guide (Figure 5) for testing purposes. While collecting courses, I placed a specific​
​emphasis on collecting courses that differed in offering type (Lecture, Recitation, Lab,​
​Discussion), days offered (MTWRF), and time slots offered (AM-AM, AM-PM, PM-PM). Once​
​I had collected sixteen courses, including the known buggy course from Issue #254, I placed​
​breakpoints within the main parsing file, fireroad.py, and used the VSCode debugger to manually​
​step through the parsing process for several non-buggy courses. The goal of manually stepping​
​through the parsing process was to understand how each parsing function received and modified​
​course information in non-buggy courses in order to diagnose the issue within the buggy courses.​
​Once I felt I had a solid understanding of the parsing process, I then set the breakpoints to only​
​trigger for the buggy course indicated in Issue #254 and manually stepped through the code until​
​I hit the ValueError raised in Issue #254. Once I hit this error, I noticed that the error wasn’t​
​caught and instead propagated out to the main function, causing a valid course to be removed​
​from the database on the grounds that it was reported by the ValuError as incomplete. Based on​
​this behavior, I decided that error handling was faulty, and upon further inspection of the error​
​handling and the error raising behavior, realized that the code was raising a ValueError and was​
​looking for a KeyError. I changed the error handling to look for a ValueError instead. Please see​
​the Quality Assurance section of this paper for details regarding the quality assurance steps taken​
​after making this change. Below is the program output when the full program was run before my​
​change (Figure 6) and after (Figure 7).​

https://github.com/sipb/hydrant/issues/254


​Figure 5.​​MIT course catalog​

​Figure 6.​​Program output pre-fix​



​Figure 7.​​Program output post-fix​

​Submitted Artifacts:​
​For my task, I submitted the following artifacts: the change made to the code (Figure 8), the unit​
​tests I created for quality assurance purposes (Figure 9), and the pull request submitted to the​
​Hydrant repository (Figure 10). The pull request, which includes both artifacts, can also be found​
​here​​.​

​Figure 8.​​Codebase change made​

https://github.com/sipb/hydrant/pull/255


​Figure 9.​​Unit tests written​



​Figure 10.​​Pull request submitted to Hydrant​

​Quality Assurance Strategy:​
​For my task, I chose to use regression testing and unit tests for quality assurance. While​
​completing my task, I changed the error handling to catch a ValueError instead of a KeyError.​
​Due to the nature of this change, I felt that I needed to ensure that all previous tests still passed​
​and that I hadn’t inadvertently caused more errors by removing the logic that was previously in​
​place to catch them. This led to the decision to use regression testing as one of my quality​
​assurance activities, as running regression testing could show me any previously passing tests​
​that were now failing due to the changed error handling. Along with regression testing, I decided​
​to use unit tests to ensure that all expected use cases were handled properly. Before I had worked​
​through the codebase to diagnose the issue, I originally believed that Issue #254 was the result of​
​a mishandled edge case for a class that started in the morning and ended in the afternoon. While I​
​was fairly certain that by fixing the mismatched exception types the edge case would be handled​
​correctly by the code run when the exception was caught, I wanted to be able to definitively say​
​that it was. In order to do this, I wrote unit tests for the three time slot cases, AM-AM, AM-PM,​
​and PM-PM. The main motivation for unit testing was that it would allow me to isolate the three​
​time slots and the parse_timeslot function in order to ensure that the previously buggy​
​parse_timeslot function was behaving as intended for all use cases. The unit tests were​
​constructed by creating a realistic time slot for each use case, calling parse_timeslot, and​
​asserting that the parse_timeslot returned the correct timeslot for each case. Once I had these​
​tests written, I ran both the regression tests and unit tests, and only submitted a pull request once​
​I had confirmed that I was passing all regression and unit tests.​



​Quality Assurance Evidence:​

​Regression Testing​
​Before I made any changes to the Hydrant codebase, I ran all existing tests (stored under the tests​
​folder of the repository) in order to get a baseline for future regression testing. Note that in the​
​original run (Figures 11,12,13), eight tests relating to the front end failed. This was expected as I​
​didn’t build the front end for a purely backend task. After making my change to the codebase,​
​these same eight tests failed, but all other tests passed (Figures 14,15,16). As such, the tasks​
​passing before the change still passed, and the tests pertaining to something I did not build still​
​failed. Additionally, after submitting my pull request, my code was run through regression tests​
​by the Hydrant maintainers and passed all tests (Figure 17), including the front end tests.​

​Figure 11.​​Pre-fix failing tests​



​Figure 12.​​Pre-fix failing tests​

​Figure 13.​​Pre-fix failing tests summary​



​Figure 14.​​Post-fix failing tests​



​Figure 15.​​Post-fix failing tests​

​Figure 16.​​Post-fix failing tests summary​



​Figure 17.​​All checks passing within Hydrant repository​

​Unit Testing​
​After making my changes to the Hydrant codebase, I wrote four unit tests, one for each of the​
​following cases: AM-AM, AM-PM, PM-PM, and one for the known failing input. I then ran​
​these unit tests using pytest and passed all four (Figure 18).​

​Figure 18.​​Unit tests passing​

​Plan Updates:​
​Over the course of this assignment, there were an unexpected number of plan changes. Almost​
​all of these changes stemmed from the fact that my original task exploded, and I had to switch​
​both projects and tasks. This added a large amount of extra time to my plan, as I had to repeat the​
​process of selecting a task, building codebase comprehension, along with actually completing my​
​new task. Overall, I spent 39.2 hours on this assignment compared to my original estimate of​
​28.25 hours. As such, the final “what actually happened schedule” is vastly different from the​
​original planned schedule and is as follows:​

​11/3 - 11/7​
​Description: Over the course of this week I selected a project (4 hrs), built the project locally (2​
​hrs), and wrote the HW 6a report (2hrs).​
​Total time: 8 hours​

​11/10- 11/14​



​Description: Over the course of this week I worked on comprehending the OpenMetadata​
​codebase and learning TypeScript.​
​Total time: 8 hrs​

​11/17 - 11/21​
​Description: Over the course of this week I began working on the OpenMetadata feature​
​frontend. Halfway through the week, my project exploded and I argued with the maintainers​
​about my lost work and the build no longer compiling (1 hr), tried to get the build re-running​
​(3hrs), gave up on the OpenMetadata project (0 hrs)​
​Total time: 9 hrs​

​11/24 - 11/28​
​Description: Over the course of this week I found a new project (2 hrs), conducted codebase​
​comprehension for Hydrant (3 hrs), debugged the issue (1.5 hrs), implemented the fix (0.25 hrs),​
​wrote unit tests (0.25 hrs), ran unit and regression tests (0.1 hrs), and submitted a pull request​
​(0.1 hrs).​
​Total time: 7.2 hrs​

​12/1 - 12/5​
​Description: Over the course of this week I wrote my HW6b report.​
​Total time: 7 hrs​

​Experience and Recommendations:​

​Original Task Selection - OpenMetadata​
​In order to complete this assignment, I first had to select a task. This was incredibly daunting, as​
​I had never contributed to or even explored an open source GitHub project before this​
​assignment. Additionally, I was very intimidated by the sheer size of the search space as there are​
​thousands of open source GitHub repositories out there. In an attempt to get some advice and​
​reassurance, I made a Piazza post (Figure 19), to which Professor Weimer responded (Figure 20)​
​with some very helpful insights. Along with following his advice, I also found websites such as​
​Good First Issues​​and​​Up for Grabs​​helpful to narrow the search space for projects. After​
​spending a decent amount of time looking for projects, I ended up settling on the OpenMetadata​
​project. I picked this project for several reasons: the strong contributor community, the large​
​amounts of documentation, and the recent creation of an issue that seemed within the scope of​
​my abilities. I selected my original task of implementing a new notification icon based on this​
​issue​​. While the HW6 spec advises against purely UI tasks due to difficulties to conduct quality​
​assurance on them, I felt that this task, while UI centered, was integrated enough with the​
​backend that there were ample opportunities to conduct quality assurance.​

https://goodfirstissues.com/
https://up-for-grabs.net/#/filters?labels=40
https://github.com/open-metadata/OpenMetadata/issues/24171


​Figure 19.​​Piazza Post​

​Figure 20.​​Professor Weimer’s response​

​Completing the Task - OpenMetadata​
​After selecting the feature implementation task, I reached out to the project maintainers and​
​formally asked to be assigned to the issue. After being assigned, I then began the process of​
​getting my device and myself ready to contribute. This involved joining the OpenMetadata Slack​
​channel in order to stay in touch with maintainers and other contributors, getting the build set up​
​locally, and beginning to go through the codebase comprehension process. After joining the​
​Slack channel, I was directed to the OpenMetadata contributor set up guide, found​​here​​, in order​
​to get a local build running. After following the guide, I was able to get the backend and UI​
​running locally in developer mode. Once I had everything running, I began the codebase​
​comprehension process. OpenMetadata is a huge project, so I had to be very selective with which​
​files I chose to examine and read through. I ran a search for the word notification in order to​
​narrow down the codebase to files that made references to the existing notification management​
​system and UI components. This still left about 100 files, so I narrowed it down even further to​
​files that only existed in the UI components folder of the repository and contained the word​
​notification in the title. This left about 25 files, which I then started to read through. As I read​
​through the files, I had to do a lot of research about specific syntax, as most of the code was​

https://docs.open-metadata.org/latest/developers/contribute/build-code-and-run-tests


​written in TypeScript and React, both of which I’d never used before. Additionally, I had to​
​spend a lot of time reading documentation in order to understand what each specific function was​
​doing for the UI. Overall, it took me roughly eight hours to build a baseline understanding of the​
​notification UI code, TypeScript, and React.​

​After building this baseline, I then began to work on modifications to the code in order to​
​complete the feature request. This implementation process required a lot of research into​
​notification infrastructure within React and different ways to combine style components in order​
​to get the desired behavior within the OpenMetadata notification icon. Once I had done my​
​research, I began actually modifying the code to implement the feature. However, about halfway​
​through my implementation, my laptop force restarted, which in turn force quit my VSCode​
​instance. When this forced quit occurred, I lost all work in the file I had been working in, as I​
​hadn’t yet pushed my changes to my forked GitHub. Additionally, when the quit occurred I lost​
​the ability to locally build the UI part of the OpenMetadata project, which was incredibly​
​problematic as my entire task revolved around the UI. I reached out to the OpenMetadata​
​maintainers asking for help getting the build running again, and was told that there was nothing​
​they could do as the UI build wasn’t officially supported on Windows/WSL architecture (Figure​
​1). They suggested that I try rebuilding using Docker, but I was unsuccessful in getting this to​
​work. I spent roughly three hours trying in vain to repeat the steps that let me build the UI the​
​first time, but was ultimately unsuccessful. At this point, I made the executive decision to pivot​
​to a different project, as the OpenMetadata project seemed like a lost cause. I debated switching​
​tasks rather than projects, but ultimately decided against it due to the fact that I had lost trust in​
​the OpenMetadata maintainers as they had failed to disclose that the UI build wasn’t supported​
​on certain systems. I felt that that information should have been included in the build guide or​
​documentation, and at the very least should have been communicated to me when I was assigned​
​a UI task to complete.​

​Starting Over - Hydrant Project and Task Selection​
​After the failure of the OpenMetadata project, which occurred exactly two weeks and three days​
​before the HW6b report was due, I was left scrambling for a new project. It again seemed​
​incredibly daunting to select a new project and task, but for different reasons this time. This time​
​around, I felt confident in my ability to find a project and task, but was more concerned with the​
​feasibility of actually being able to complete a task, do quality assurance, and write the report​
​before the suggested report deadline of 12/4. Additionally, I was worried about being able to​
​balance this project with two other final projects, a final research paper, and two exams. Based​
​on these fears and the remaining time left on the project, I decided to modify the project search​
​space to only include smaller projects that used TypeScript, Python, and C++. Using this search​
​criteria, I came across the Hydrant project. The Hydrant project stood out to me as it was small,​
​highly active, written in TypeScript and Python, and had an issue that was opened three hours​
​before I came across the project. I decided almost immediately that this would be my project, as​



​it was in languages I was familiar with and had an issue that seemed to be within my ability to​
​solve in two weeks. I placed a comment asking to be assigned the issue, and two hours after that,​
​received a greenlight response from the maintainers. This cemented my switch, and I fully​
​pivoted from OpenMetadata to Hydrant.​

​Completing the Task - Hydrant​
​Once I received the green light from maintainers, I immediately started working on my task. To​
​begin, I pulled the codebase into a local VSCode instance and started reading through files to get​
​a sense of what the code was actually doing. This experience was very different from the​
​codebase comprehension I did for OpenMetadata for several reasons. To begin with, Hydrant has​
​virtually no documentation and no way to quickly and reliably reach maintainers. This made​
​understanding the code much more difficult, as I had no way to get any kind of explanation for​
​what the code was doing. Additionally, the parsing functionality within Hydrant is done very​
​non-intuitively and uses base 34 rather than base 24 for all time slot conversions. I had to figure​
​this out on my own, which was much harder than figuring out the functionality for various​
​OpenMetadata functions. However, one strength of Hydrant is that the code base was small​
​enough that it was feasible for me to place break points and manually step through examples to​
​see how the parsing functionality worked. Additionally, I had a lot of courses I knew were parsed​
​correctly, and I was able to access and use those courses as my example courses for my manual​
​walk-throughs. This allowed me to build a deeper understanding of how the code worked, as I​
​was able to see at each step of the process how information was being processed. I tend to be a​
​visual learner, so I found it easier to build my own interpretation and intuition by watching​
​variables change as they progressed through the program as opposed to reading documentation​
​written by someone else.​

​Once I had an understanding of the codebase, actually fixing the issue was rather trivial. In order​
​to isolate the issue I used my breakpoints and set them to trigger only for the course causing the​
​ValueError seen in Issue #254. Once the breakpoints triggered, I then walked through the​
​execution of the buggy input until I reached the buggy behavior. Once I reached this behavior, I​
​was able to isolate the issue to a pair of functions, one of which called the other and then used​
​the returned result. I found the exact error being raised in the called function, and then looked at​
​the error handling in the calling function. In doing so, I found a mismatch between the error type​
​being raised and the error type being checked for. I then switched the error type being checked​
​for to match the one being raised and reran the original buggy course, which was now parsed​
​correctly.​

​After making the switch in the error handling, I had some suspicions that by changing the error​
​type being caught, I would have inadvertently caused errors previously being caught to be​
​missed. This suspicion informed my quality assurance process, and led me to use regression and​
​unit testing in order to verify my change. As previously discussed in the quality assurance​



​section of this report, these two metrics were chosen as they allowed me to ensure that the​
​change made to one function, i.e. one unit, did not reintroduce old bugs and that the unit​
​functioned as expected in all possible use cases. Once I had passed all regression and unit tests, I​
​then created a pull request in which I explained the changes I made, why I made them, and the​
​quality assurance processes I used.​

​Failure, Flexibility, and Risk in Software Engineering​
​Over the course of this homework, I learned many valuable lessons about software engineering​
​in the real world, the most important of which pertained to failure, flexibility, and risk. Going​
​into this project, I expected things to be difficult, and I expected there to be setbacks; what I did​
​not expect was complete and total failure. Up until this point in my engineering career, I have​
​always been able to execute a plan, albeit with some variation, to get to the intended and original​
​end result. This was the first time that I had to not only deviate from the plan, but abandon the​
​end goal entirely. This was something that I found very difficult to accept and deal with as I am​
​someone who does not take kindly to perceived failures. However, I think that from this​
​“failure”, which technically isn’t even a failure, I learned a very valuable lesson about software​
​engineering in the “real” world: failure is only a matter of perspective.​

​When reading the instructions for this assignment, it is never stated anywhere that I had to​
​complete my task. In fact, it was mentioned numerous times that a very likely outcome was that I​
​would not complete my task, and that that was entirely okay. Success, as defined by the​
​instructions, is to simply engage with and document the software engineering process and write a​
​report on it. However, success as defined by myself, was to complete the original task that I​
​selected. Depending on which definition of success you use, I either failed or succeeded on this​
​assignment. Importantly, the only definition that matters is the one in which I succeeded. I think​
​that engineers have a tendency to internally define success such that success for them is entirely​
​different from success as defined by the requirements. We have a tendency to want things to go​
​the way we plan them, and any variation between the imagined result and the actual is perceived​
​as a failure, even if it objectively isn’t one. Additionally, I think that we tend to struggle with​
​abstract notions of success. We like numbers, we want to get 100% coverage or an optimized​
​time complexity, and we forget that, in most cases, these numbers are an upper bound on success,​
​not a lower. This assignment, with its abstract notion of success, taught me that most software​
​engineering will be about meeting a set of requirements and that my personal definition of​
​success, and with it failure, does not matter so long as I meet the requirements set out for me.​

​Additionally, this taught me that in order to succeed at meeting these requirements, I must let go​
​of my own internal notions of success and embrace flexibility. This assignment has shown me​
​that flexibility is imperative in order to succeed in software engineering, as the plan always​
​changes, primarily as a direct result of risk. When writing the HW6a report, we were asked to​
​write about risks we might encounter in this project and how we would manage them. In my​



​report, I accounted for several risks, but failed to account for the only risk I ended up actually​
​encountering. In my description of nuanced risks, I forgot the most obvious – that the project​
​itself would no longer be feasible. This risk seemed benign and improbable, and I assumed that​
​as a competent engineer I had fully accounted for all risks and had effectively come up with​
​strategies to manage them. Obviously, I did not account for all risks, and as such, had to​
​scramble and panic midway through the assignment. This oversight taught me that in order to​
​truly have a successful plan, you have to account for all possible risks, not just the ones that you​
​find probable. Similarly, it taught me that even when you do plan for all risks, an unexpected risk​
​can still occur, meaning that in order to be a successful engineer, you need to be able to be​
​flexible and make decisions on the fly. Overall, it taught me that I should plan on not planning​
​for everything, and keep an open mindset about potential paths forward through a project. It also​
​reinforced the importance of risk in the software engineering process.​

​Recommendations:​
​After completing this assignment, I have several recommendations for future students. First and​
​foremost, I would recommend that students start this project early. I started this project with a​
​little more than a month to complete it, and still ended up feeling panicked about being able to​
​get it done on time. You will absolutely need more time than you allocated, regardless of your​
​task exploding or not. Starting early gives you the opportunity to make mistakes and change your​
​plan, and helps you avoid a situation in which you don’t finish the assignment due to some​
​unexpected issue. Second, I would recommend that students select projects that are well​
​documented and have reliable means of communication with the maintainers. Documentation​
​and communication make the codebase comprehension process exponentially easier, which is the​
​central part of this assignment. Third, I would recommend that students pick tasks that require​
​them to use skills they already possess. My original OpenMetadata task was in a language I​
​didn’t know, doing UI work which I had never done. This made my life much harder than it​
​needed to be, and I had to spend a lot of extra time building a skill set to be able to complete my​
​task. The Hydrant task went much smoother because it was in a language I knew and pertained to​
​parsing functions which I had experience with. Lastly, I would recommend that students embrace​
​the process while letting go of the result. Most EECS classes exclusively place emphasis on the​
​final result. They teach students that the only thing that matters is how well your code runs; that​
​success is measured by how many test cases you pass, the space and time complexity of your​
​code, and how many bugs your test cases catch. This is how software engineering works in​
​academia, not how it works in the real world. This assignment aims to introduce you to the​
​reality of software engineering by placing its emphasis on the process, not the end result. Lean​
​into the process, as understanding and enjoying it will make you a better software engineer.​



​Advice for Future Students:​
​My advice to future students would be this: Do the readings, go to class, and appreciate the​
​process.​

​I give my permission to course staff to use my materials for future semesters.​

​Extra Credit - Pull Request Accepted:​
​My change was merged into the Hydrant repository on November 25th, 2025. The closed pull​
​request can be found​​here​​.​

​Figure 21.​​Merged pull request​

https://github.com/sipb/hydrant/pull/255

