

Question 1. Word Bank MatchingQuestion 1. Word Bank Matching (1 point each, 14 points)

For each statement below, input the letter of the term that is best described. Note that you can click each word (cell) to mark it
off. Each word is used at most once.

A. — Automated Program
Repair

B. — Composite Design
Pattern

C. — Concurrency Bug D. — Conditional
Breakpoint

E. — Delegation F. — Factory method pattern G. — Fault Localization H. — Functional
Requirement

I. — Informal goal J. — Interview K. — Perverse Incentive L. — Postconditions

M. — Productivity N. — Profiling O. — Quality

Requirements

P. — Readability

Q. — Requirements Elicitation R. — Singleton Design

Pattern

S. — Stakeholder T. — Strong Conflict

U. — Top-down

comprehension

V. — Validation W. — Verification X. — Watchpoint

Y. — Weak Conflict

Q1.1:
UU

Luffy is a new employee at Netfleecs. They utilize their experience from prior jobs to understand the codebase and quickly get

up to speed.

Q1.2:

FF

Pearl is developing a banking application for FloorMart, allowing users to make various types of payments. FloorMart does not
want the specific types of payment objects to be associated with client source code. Pearl suggest using this term.

Q1.3:
HH

MunchyRoll is developing a streaming service and says that their catalog function must indicate whether or not each video has

associated subtitles.

Q1.4:

OO

Devforce has created a privacy policy for their latest app, stating that a user's personal information will not be shared with
other users without their consent. Their app must implement this policy.

Q1.5:
GG

Yuxuan wants to determine which of the 50 patches committed last night cause a bug. To do this, they use delta debugging to

find a minimal subset of those patches that induces a failure.

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Q1.6:

RR

Aang is developing a game for EECS 494, where game objects react to game physics based on how much time has elapsed
since the last game update. Aang uses this to implement the game clock.

Q1.7:
SS

Bank of Michigan is assessing whether selling sports software would be profitable. Their discussions incorporate multiple this
term, helping to ensure that they consider diverse factors such as legality, software feasibility, company executive opinion, and
sales projections.

Q1.8:
QQ

481andMe wants to create promotional videos for their debut product. They outsource this project to a third-party company

led by Rohit. Rohit first meets with 481andMe to discuss the key elements to include in the video.

Q1.9:

WW

After creating a new application, Wahoo ensures that the application conforms to its specifications.

Q1.10:

PP

Eugene recently identified a bug in Boogle’s banking application that results in users being charged without their money being
transferred. To localize the issue, Eugene begins reviewing the code base, but finds it challenging. Eugene believes that it

would be beneficial to improve this term.

Q1.11:

XX

Omkar recently discovered a bug that causes Miscord's website to display incorrect text. To track changes in the variable
holding the text value, Omkar uses this term.

Q1.12:
LL

Naruto is developing a program. Amazoon specifies that the program should be designed so that the return value is always 0.

Q1.13:
BB

Spongebob is building a document management application for PiedPiper, where documents can contain individual elements

(such as text, images or tables) as well as groups of elements. PiedPiper wants users to be able to copy, paste and delete entire
groups with a single action. Spongebob suggests using this term.

Q1.14:
JJ

MoonChips is developing a new application and assigns Priscila the task of documenting wants and needs. As one part of doing

so, Priscila does this.

Question 2. Guest Lectures and Course ConceptsQuestion 2. Guest Lectures and Course Concepts (18.5 points)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

The following questions will ask you about the 4 guest lectures. Please read the question carefully and follow instructions as
directly as possible.

(a) (3 points)

At least two guest lecturers mentioned their work related to AI for SE. Give one lecturer’s name and briefly describe what they

did or talked about on this topic in their lecture. (one sentence maximum) Then provide an example of SE for AI that you have
learned in EECS 481 class. (one sentence maximum)

1

ANSWER: Aidan Yang mentioned that he is doing PhD research about using large language models (AI) for program analysis
(SE) or to guide verification (SE). (+1.5) Emerson Murphy-Hill mentioned that his current work is about large language model -

based developer experiences in Visual Studio, VSCode, and GitHub (e.g., LLMs can help fix GitHub issues). (+1.5) Henry
Beckstein's AI for Subaru satellite/computer vision is also a valid answer. (+1.5)

(b) (3 points)

Aidan Yang mentioned four techniques for software quality assurance, starting with software testing. What are the other three

techniques he mentioned? (one sentence). EECS 481 discussed model checking and its definition. What technique described by
Aidan is the closest to the definition we covered, and why? (two sentences maximum)

1

ANSWER: Aidan also mentioned property based testing, bounded model checking and non-bounded model checking. (+1.5) In
EECS 481, model checking was defined as algorithmically verifying if a finite-state model of a system satisfies a given

specification. The specification is usually expressed in temporal logic. Model checking considers executions of arbitrary length
(i.e., an arbitrary number of transitions). This definition is closest to Aidan's explanation of non-bounded model checking, which

is model checking and also does not only consider a pre-determined number of execution steps. (+1 non-bounded model
checking answer, +1 explanation)

(c) (3.5 points)

Henry Beckstein mentioned software testing at Subaru in his guest lecture. Quote one sentence describing his idea of the

purposes of testing from his lecture slides. Then describe, in one sentence, a purpose of software testing from the EECS 481
lectures or readings. To what degree do those two ideas align? Briefly explain your answer. (three sentences maximum)

Your answer here.

ANSWER: Henry mentioned in his slides that the purpose of testing is to “Test for functional correctness” / “Test for customer
feeling”. (+1) In class, we described the purpose of software testing as software quality assurance: gaining confidence that the

implementation adheres to the specification. (+1) The two ideas are essentially the same, because quality consists of functional
correctness as well as the (possibly non-functional) satisfaction of the software users, so testing for quality assurance aligns

with Henry's description. (+1.5)

(d) (4 points)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Farhad Arbab introduced a programming language in his guest lecture. What kind of program is this new language designed

for? (quote one relevant sentence from his slides, and then answer the question in another one sentence) For this kind of
program, what is a common issue and what is a solution that we covered in EECS 481 could help resolve that issue? (two

sentences maximum)

Your answer here.

ANSWER: “There exists a better way to conceive of and express concurrency protocols…”. The language Farhad introduced is

for better supporting concurrent programs. (+1 quote, +1 answer) The most common issue associated with concurrent
programs is the race condition (when two threads access the same shared state and at least one thread writes to it). An

analysis like Eraser can help resolve locking issues on shared variables by reasoning about lock sets. The Delta Debugging
lecture also described a use of delta debugging to reason about thread interleavings for concurrent programs. (+2)

(e) (5 points)

Henry Beckstein mentioned software analysis at Subaru in his guest lecture. Quote one sentence from his lecture slides that

shows his idea of the use case and limitation of software analysis. In two sentences, describe why this limitation exists for most
software analysis techniques. Finally, name two verification approaches from the EECS 481 lectures or readings that might

apply in the domain Henry described. (five sentences maximum)

Your answer here.

ANSWER: Quote: “Software Analysis can test for memory leaks, but it can’t verify if the program is correct” (+1) Most analysis

techniques suffer from false positives and or false negatives (this issue is sometimes called soundness or completeness).
Analysis techniques that target interesting software properties rarely make full guarantees about correctness. Such analyses

are often undecideable. (+2) Techniques such as model checking (which is often applied to safety-critical domains such as
automotive software) or formal code inspection (which can help with tricky bugs like memory leaks in a small piece of code)

may apply. (+2)

Question 3. Short AnswerQuestion 3. Short Answer (25 points)

You are a manager. You want to figure out how much time your team spends on the following tasks: investigating bug reports,
reading requirements, debugging, and browsing Stack Overflow. You have a hypothesis that your team is spending too much

time reading bug reports. To assess this, you consider two options: (1) use a software tool that tracks which window each team
member has active (i.e., bug report window vs. coding window) and logs how much time they spend doing each activity,

including when they switch tasks, or (2) use a software tool that displays a pop-up window to each team member every 15
minutes, asking each person to select the activity they are currently doing from a list.

(a) (4 points)

Identify two profiling-related concepts in the above scenario. For each concept, explain the concept and its relationship to the

scenario in two sentences. (2 * 2 = four sentences total)

Your answer here.

ANSWER:

+(1) point per correctly-identifyig a profiling concept (1) can de identifed as flat profiler, call-graph, or intrumentation. (2) is
sampling profiling

+(1) point per satisfactory explination (paralleling to the above)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

You are programming a calendar. When the current month is not December, all events created and added will be regular type
events. When the current month is December, all events created and added to the calendar will be of a special holiday type

instead. Events can be shown in different fonts. Using some or all of the following method signatures:

create_event()

add_event()

is_december()

change_fonts(string font_type)

Sample Answer: (1) Describes varies types of profiling. Flat profiler, call-graph, and instrumentation are valid here with correct

explaination. Instrumentation profiling can makes sense here since we are using a technique that effectively adds instructions
to the target program to collect the required information. Flat and call-graph profilers are both profilers types that are based

on output. In this scenario, callling (1) an example of a flat profiler is valid since we are caputuing task "times" but don't care
about tracking the context or callees within those tasks. This senario is also similar to a call-graph because we can use the

output to determine freqeuences and call-chains. (2) Describes the sampling approach but instead asking a program how long
they are taking, we having a human check in every 15 minutes.

(b) (2 points)

Describe a (bad) way to solve this problem with an anti-pattern in 4 sentences or less.

Your answer here.

ANSWER:

+(2) for suggesting reusing if statements throughout the code

OR +(2) for any other antipattern that does not involve the abstract factory design pattern (see second example answer)

Answer: Before calling create event, first check if is_december() is true. If is_december() is true, call
holiday_event_factory.create_event(), otherwise call regular_event_factory.create_event(). Then, whichever path was taken, add

the resulting event to the calendar using add_event()

Answer: [Alternate prompt] Before calling create event, first check if is_executive_visiting() is true. If is_executive_visiting() is

true, call priority_event_factory.create_event(), otherwise call regular_event_factory.create_event(). Then, whichever path was
taken, add the resulting event to the calendar using add_event()

Answer: Create two different versions of the calendar program. The first uses regular_event_factory.create_event(), the second
uses holiday_event_factory.create_event(). Use the first program during Jan-Nov, use the second program only during Dec.

Answer: [Alternate prompt] Create two different versions of the calendar program. The first uses
regular_event_factory.create_event(), the second uses priority_event_factory.create_event(). Use the first program during when

no executives are in the office, use the second program only when executives are in the office.

(c) (2 points)

Describe a way to solve this problem with the abstract factory design pattern in 4 sentences or less.

Your answer here.

ANSWER:

+(1) mentions using only one conditional statement at the beginning to set a single variable which will be used to create the
events

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

+(1) mentions using an abstract event_factory class and implementing two subclasses for creating regular and holiday events

Answer: Create an abstract factory class called Event_Factory and create two subclasses of Event_Factory,
Regular_Event_Factory and Holiday_Event_Factory. Only once at the start of the program, check if it is_december(). If

is_december() returns true, assign an Event_Factory variable (event_factory) to be an instance of Holiday_Event_Factory,
otherwise set event_factory to be an instance of Regular_Event_Factory. Now, creating and adding events is as simple as

calling event_factory.create_event() and add_event().

Answer: [Alternate prompt] Create an abstract factory class called Event_Factory and create two subclasses of Event_Factory,

Regular_Event_Factory and Priority_Event_Factory. Only once at the start of the program, check if is_executive_visiting() is true.
If is_executive_visiting() returns true, assign an Event_Factory variable (event_factory) to be an instance of

Priority_Event_Factory, otherwise set event_factory to be an instance of Regular_Event_Factory. Now, creating and adding
events is as simple as calling event_factory.create_event() and add_event().

(d) (2 points)

Give one reason why the abstract factory design pattern is preferred to the anti-pattern in 4 sentences or less. Your answer
should identify a desired maintainability property and indicate why the design pattern promotes it.

Your answer here.

ANSWER:
+(1) identifies a desired maintainability property

+(1) indicates why the design pattern promotes the desired maintainability property

Answer: (Assuming the student talked about using many conditional statements throughout the code as an antipattern) The

abstract factory design pattern requires only a single conditional statement, reducing how many code changes are required if
the functionality must change. If the holiday events should instead be created in both December and November, every "if

is_december()" statement for events will need to be updated (e.g., "if is_december() or is_november()"). The abstract factory
method requires only updating the initial conditional that defines abstract_factory. The abstract factory design pattern

promotes this by requiring just a single concrete factory class assignment at the start of the code and putting all of the
relevent behavior inside of the different concrete factory subclasses.

Answer: (Assuming the student talked about using many conditional statements throughout the code as an antipattern) The
abstract factory design pattern requires only a single conditional statement, reducing how many code changes are required if

the functionality must change. If the priority events should instead be created only when executives are in the office on
weekdays, every "if is_executive_visiting()" statement for events will need to be updated (e.g., "if iis_executive_visiting() and

is_weekday()"). The abstract factory method requires only updating the initial conditional that defines abstract_factory. The
abstract factory design pattern promotes this by requiring just a single concrete factory class assignment at the start of the

code and putting all of the relevent behavior inside of the different concrete factory subclasses.

(e) (4 points)

You are part of a team of developers that is using model checking for quality assurance. Your model checker assesses whether
an abstraction (model) of the program adheres to its formal specification. To directly improve model checking outcomes, one of

your teammates proposes expanding the current test suite to obtain higher branch coverage. Support or refute the
recommendation in 4 sentences or less.

Your answer here.

ANSWER:
+2 Refute the reccomedation

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

 |

 |

 V

 (A) [result = None]

 |

 |

 V

 (B) [num < 0]

 | |

 | |

 .-----------------------. .----------------------------------.

 | |

 | |

 V V

(C) [result = "low"] .---------------------- (D) [num > 0]

 | | |

 | | |

 | | |

 | | V

 | | (E) [result = "high"]

 | | |

 | <-- (X) { result = ______ } | |

 | | |

 | | |

 | | (Y) { result = ______ } --> |

 | | |

 | | |

 | V |

 .--------------------> (F) [result.upper()] <--------------------.

 |

 |

 (Z) { result = ______ } -> |

 |

 V

The control flow graph above corresponds to a short Python code snippet. We want to use a dataflow analysis to detect
possible NoneType errors (i.e., any uses of, or operations on, a variable that has value None). In your response, answer the

following questions:

+1 Reasoning - Model checking is a static analysis technique that verifies whether a model adheres to a formal specification,

and it does not rely on dynamic execution or branch coverage of the program's code. Expanding the test suite for higher
branch coverage may improve traditional testing outcomes but does not directly influence the thoroughness or accuracy of

model checking outcomes.

+1 stayed within 4 sentences or less

-(1/2) went over 4 sentences

(f) (2 points)

What direction of data analysis, forward or backward, should we employ to determine if there is a possibility that a NoneType
error could occur (i.e., can the assignment at point A reach point F)? Justify your answer in 4 sentences or less.

Your answer here.

ANSWER:
+1 Forward Analysis

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

You are eliciting requirements for a company making an app to handle regrade requests for exams. Students would be able to

submit regrade requests via student accounts and course staff members would respond to them via staff accounts. The
customer tells you the following four statements: “(1) All valid accounts can submit regrade requests and respond to regrade

requests. (2) Students will always be given a week to submit a regrade request after the exam scores are posted. (3) Regrades
will be responded to within a week. (4) Regrades are not available over the holiday break.”

+1 Reasoning - forward analysis can provide information about some code to "future" code -- along the normal path of

execution. This the case for this problem where we are trying to figure out if some assignment reaches some other future point
in the code.

(g) (3 points)

Consider the constant propagation dataflow analysis applied to the control flow graph above. Use the transfer functions
discussed in class to determine what final dataflow value would be associated with “result” at each of (X), (Y), and (Z). Possible

dataflow values in this context are: top, bottom, constant. Write your answer as three words separated by commas. The first
word corresponds to your answer for (X), the second for your answer for (Y), and the third for your answer for (Z).

Your answer here.

ANSWER:
+1 per each that is correct

Answer: [constant, constant, top]

(h) (2 points)

Does the first customer statement have a terminology, designation, structure inconsistency, or no inconsistency with the

specifications? Do NOT use statements (2) and (3) when answering this. Support your claim in 3 sentences or less.

Your answer here.

ANSWER:

+1 Identifies it as a designation inconsistency

+1 Reasoning - the issue here is around the statement "all valid accounts..". The first statement, on its own, implies that ALL

accounts are able to submit regrades AND respond to them. This is an inconsistency with the designation of what specific
TYPES of accounts are allowed to do (i.e., students can submit regrades but the cannot respond to them). If the customer had

claried which accounts could do what in the first statement, that would solve the issue.

(i) (2 points)

Do any of the customer’s statements have a strong conflict, weak conflict, or neither? Support your answer in 4 sentences or
less.

Your answer here.

ANSWER:
+1 identifies statements as having a weak conflict

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

+1 Reasoning - the conflict occurs between statements (2) and (4) or (3) and (4). There is a conflict because if by coincidence the

1 week limit happens within a 2 week long holiday, students will not be able to submit a regrade and/or staff members will
not be able to respond since regrades are not avaliable during holiday break. However, this is not a strong conflict as the

conflict only happens sometimes and is not an issue the entire semester.

(j) (2 points)

What strategy would you use to resolve these sorts of conflicts, and why? Support your answer in 3 sentences or less.

Your answer here.

ANSWER:
+2 Answers may very - Justifiable strategy to solve the conflict. Example: In this case, asking the customer to clarify which

accounts have what permissions is important. Another possible solution is clarifiing with the customer on whether regrades
should be allowed during holidays or should regardes be given a week before holiday break, etc.

Question 4. Delta DebuggingQuestion 4. Delta Debugging (10 points)

(a) (2 points)

Above is a bash script is-interesting.sh which describes one particular definition of “interesting” for Delta Debugging. Given the
above bash script, how many tests (probes, considered subsets, calls to is-interesting.sh) does the Delta Debugging algorithm

perform to identify the minimal subset when applied to input_list = [4, 5, 6, 8, 9, 10] ? Assume that in the
case of an odd sized set, the split will result in the first half being smaller. Your answer should be just a number (no spacing or

other characters).

Your answer here.

ANSWER: 6

(b) (2 points)

FIRST=0
SECOND=0
for i in $* ; do
 if [$i -eq 5]; then FIRST=1 ; fi
 if [$i -eq 8]; then SECOND=1 ; fi
done
​
if [$FIRST -eq 1]; then
 if [$SECOND -eq 1]; then
 exit 1 # yes, this set is interesting
 fi
fi
​

1
2
3
4
5
6
7
8
9

10
11
12
13

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

With the above interesting definition, give an input_list such that Delta Debugging will encounter interference exactly ONE

time. Remember that the input list must be interesting itself. Format your answer in the form of a Python list. (e.g., [1,2,3]).
If it’s not possible, type “NOT POSSIBLE”.

Your answer here.

ANSWER:
+2 Giving a valid list. As long as the list of integers contains "5" and "8", it is correct. Example: [4,5,8]

(c) (2 points)

With the above interesting definition, give an input_list such that Delta Debugging will encounter interference TWO OR

MORE times. Remember that the input list must be interesting itself. Format your answer in the form of a Python list. (e.g.,
[1,2,3]). If it’s not possible, type “NOT POSSIBLE”.

Your answer here.

ANSWER:
+ 2 NOT POSSIBLE

(d) (4 points)

Delta Debugging can identify a minimal set of conditions that cause a failure in a program. In the context of Andreas Zeller’s
Automated Debugging: Are We Close?, explain how Delta Debugging contrasts with traditional debugging methods and why it
is considered more systematic and efficient in some cases. Support your answer with a relevant quote from the text using no

more than 6 sentences.

Your answer here.

ANSWER:

+1 Valid quote from source that complements reasoning

+2 Valid reasoning - look below for sample answer

+1 Stays within 6 sentences

Answer: Delta Debugging contrasts with traditional debugging by automating the process of narrowing down the minimal set

of conditions that cause a failure, making it more efficient in many cases. In traditional debugging, programmers manually
have to analyze code and test scenarios, which can be time consuming and error prone. As mentioned in the reading, “Delta

Debugging always produces a set of relevant failure-inducing circumstances, which offer significant insights into the nature
and cause of the failure.” This systemic approach can reduce trial and error and provide a clearer understanding of the

failure’s root cause.

Question 5: Dataflow Analysis Question 5: Dataflow Analysis (16.5 points)(16.5 points)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

Consider a live variable dataflow analysis for three variables, x, y, and z used in the control-flow graph below. We associate

with each variable a separate analysis fact: either the variable is (1) possibly read on a later path before it is overwritten (live),
or (2) it is not (dead). We track the set of live variables at each point: for example, if x and y are alive but z is not, we write {x,
y}. The special statement return reads, but does not write its argument. In addition, if and while read, but do not write all
of the variables in their predicates. (You must determine if this is a forward or backward analysis.)

(1.5 points each) For each basic block B1 through B11, write down the list of variables that are live right before the start of the
corresponding block in the control flow graph above. Please list only the variable names in lowercase without commas or other

spacing (e.g., use either ab or ba to indicate that a and b are alive before that block).

ANSWER: {'z', 'x',
'y'}

B1

ANSWER: {'z', 'x',
'y'}

B2

ANSWER: {'x', 'y'}

B3

 ANSWER: {'x'}

B4

ANSWER: {'x', 'y'}

B5

 ANSWER: {'y'}

B6

 ANSWER: {'y'}

B7

 ANSWER: {'x'}

B8

ANSWER: {'z'}

B9

 ANSWER: {'z'}

B10

 ANSWER: {'z'}

B11

Question 6. Automatic Program RepairQuestion 6. Automatic Program Repair (16 points)

Automatic Repair Tools (like Repairnator or GenPRog or SapFix) and recent Large-Language Models (like ChatGPT or Codex)
are algorithms that have been used to produce patches for buggy programs. We consider 4 concepts associated with these

tools: fault localization, abstract syntax tree edits, machine learning, and maintenance costs. For each concept, identify the
general approach (APR or LLMs) that uses, relates to, or improves that concept the MOST and describe how it does so in 4

sentences or less. In addition, you must support each claim with a separate quote from the Automatic Program Repair slides
or AI for SE slides or Monperrus et al.'s Repairnator patches programs automatically reading.

(a) (2 points)

Fault Localization

Your answer here.

ANSWER:
+(1/2) Identifies APR

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

+1 Reasoning- Automated Program Repair (APR) tools like GenProg and Repairnator rely on explicit fault localization

techniques to identify buggy program components. They often use techniques like spectrum-based fault localization. LLMs do
not use fault localization techniques and often attempt repairs based on broader contextual understanding of the code.

+(1/2) Valid Quotes from one of the three slides + complements their reasoning

(b) (2 points)

Abstract Syntax Tree Edits

Your answer here.

ANSWER:
+(1/2) Identifies APR

+1 Reasoning- tools like SapFix and Genprog frequently generate and modify patches at the level of Abstract Syntax Trees.
These tools leverage the formal structure of ASTs to ensure that patches adhere to the programming language's syntax rules.

This approach allows APR to produce highly targeted and valid edits, often guided by predefined templates or learned repair
patterns.

+(1/2) Valid Quotes from one of the three slides + complements their reasoning

(c) (2 points)

Machine Learning

Your answer here.

ANSWER:

+(1/2) Identifies LLMs

+1 Reasoning- Large Language Models (LLMs), like ChatGPT and Codex, use machine learning techniques to address program

repair tasks. By being trained on extensive datasets of code, they can create patches that may align with coding patterns and
common bug resolution strategies. On the other hand, Automated Program Repair (APR) tools rely on fixed rules or heuristic-

based searches (Fault localization, Fitness Function, etc.).

+(1/2) Valid Quotes from one of the three slides + complements their reasoning

(d) (2 points)

Maintence Costs

Your answer here.

ANSWER:
+(1/2) Identifies APR - The context here is Maintence Costs associated with patch generation for fixing buggy programs. APR

aims to directly improve this than tools such as LLMs

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

+1 Reasoning- Both APR tools and LLMs aim to reduce maintenance costs, but APR tools address maintenance costs

associated with patching buggy programs directly by automating patch generation. APR approaches like Repairnator are
made to try to reduce maintenance costs by automating bug fixes via techniques such as fault localization, AST edits, and

testing - all of which are lacking in most LLMs used for patch generation and thus are not as effiecent or "geared" towards
fixing of faulty programs.

+(1/2) Valid Quotes from one of the three slides + complements their reasoning

(e) (4 points)

Are tools that use the notion of “Generate and Validate” (like Repairnator) static or dynamic analysis? Are tools like LLMs used
to repair buggy programs static or dynamic analysis? Explain in 6 sentences or less. In addition, you must include a quote from

the Automatic Program Repair slides or AI for SE slides or Monperrus et al.'s Repairnator patches programs automatically
reading to support your claim.

Your answer here.

ANSWER:
+1 "Generate and Validate" Notion is dynamic analysis

+1 LLMs as program repair is static analysis

+1 Reasoning (+ 1/2 if only half the reasoning is present)- APR use the notion of "Generate and Validate" which involves the

process of of generating patches and validating them by running them on a test suite. This is how plausible patches are
determined and thus is considered dynamic analysis. LLMs, however, do not run the program or test their proposed patch on a

test suite. Thus, these are static analysis.

+1 Valid quote from either valid resource + complements their reasoning

-(1/2) Over 6 sentences

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

(f) (4 points)

“Hallucinations” are programming outputs that, although seemingly plausible, deviate from users’ intent, factual knowledge,
or contexts. Both APR and LLMs tool can generate candidate patches that might be hallucinations. Pick a broad category of

tool (APR or LLM) and give a concrete example of the sort of hallucination it might create. Explain why this might happen in 6
sentences or less. In addition, you must include a quote from the Automatic Program Repair lecture slides or AI for SE slides or

Monperrus et al.'s Repairnator patches programs automatically reading to support your claim.

Your answer here.

ANSWER:

+2 Valid concrete/specific example of a “Hallucinations” within programming (if, instead, the example is broad -> +1) - APR:
Tests- “compare yours.txt to trusted.txt”, GenProg's fix- “delete trusted.txt, output nothing”. OR LLMS: Tests- “compare

yours.txt to trusted.txt”, ChatGPT's fix -"may have a syntax error but it presents it with confidence that its the right fix".

+1 Reasoning (+ 1/2 if only half the reasoning is present) - APR tools can make a patch that appears to work (passes current

test cases), but may not implement the desired behavior. It could be that more test cases are need to reach that. LLMs, on the
other hand, can present patches that fail the test cases but are presented as valid working code.

+1 Valid quote from either valid resource + complements their reasoning

-(1/2) Over 6 sentences

Extra CreditExtra Credit

(1) What was your favorite topic or activity during the course? (1 point)

Your answer here.

(2) What do you think we should do more of next semester (or what is the thing you would most recommend that we change
for future semesters)? (1 point)

Your answer here.

(3) Identify a different single optional reading (anything with the phrase optional) that was assigned after Exam 1 or a “long-
instructor-post” that was posted on Piazza after Exam 1. Write two sentences about it that convince us you read it critically. (1

points)

Your answer here.

(4) List one thing you learned and liked from ANY of the 4 guest speakers. Convince us that you paid careful attention during

that lecture. For full credit, your answer must be different from your responses in the exam AND you must identify the guest
speaker by name. (1 points)

Your answer here.

(5) Identify ANOTHER different single optional reading that was assigned after Exam 1 or a “long-instructor-post” that was
posted on Piazza after Exam 1. Write two sentences about it that convince us you read it critically. (1 points)

Your answer here.

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

(6) Identify a course non-professor staff member (e.g., Priscila, Hanchi, Youcef, Leena, Livia, Christina, Rohit) by name and

either describe one instance in which you had a positive interaction with that person or describe a potential area for
improvement for that person as an instructor. (We take these comments seriously and use this information to determine who

we ask back next year and to put people up for awards and recognition.) (1 points)

Your answer here.

Honor Pledge and Exam Submission

You must check the boxes below before you can submit your exam.

I have neither given nor received unauthorized aid on this exam.

I am ready to submit my exam.

Submit My Exam

Once you submit, you will be able to leave the page without issue. Please don't try to mash the button.

The exam is graded out of 100 points.

minutes remaining

Hide Time

Manual Save

Navigation
Question 1
Question 2

Question 3
Question 4

Question 5
Question 6

Extra Credit
Pledge & Submit

