
You don't have a submission that is not late.

Question 1. Word Bank MatchingQuestion 1. Word Bank Matching (1 point each, 14 points)

For each statement below, input the letter of the term that is best described. Note that you can click each word (cell) to mark it
off. Each word is used at most once.

A. — A/B Testing B. — Agile development C. — Alpha Testing D. — Beta Testing

E. — Competent Programmer
Hypothesis

F. — Constructive Cost
Model

G. — Dynamic
Analysis

H. — Formal Code
Inspection

I. — Fuzz Testing J. — Milestone K. — Mocking L. — Oracle

M. — Pair Programming N. — Pass Around Code
Review

O. — Priority P. — Race Condition

Q. — Regression testing R. — Risk S. — Severity T. — Spiral Development

U. — Streetlight Effect V. — Triage W. — Uncertainty X. — Unit Testing

Y. — Waterfall Model

Q1.1:
BB

Miscord recently started working on a new project. Ben is in constant contact with the stakeholders, modifying the project as

their needs change.

Q1.2:

XX

EECSon Mobile has a policy that for every created function, there must be corresponding inputs, outputs and oracles to assess
that function.

Q1.3:
PP

Livia decides, on a whim, to watch the latest Parvel movie, Avengers: End of Germs. Upon arriving at the theater, they discover

that someone else is already sitting in their assigned seat. It turns out both people bought tickets online at the last minute
and were assigned the same seat.

Q1.4:
KK

Aang is developing a social media app and designing the user interface. To verify that the interface displays information

properly, they are simulating the backend data using a static JSON file.

Q1.5:

CC

Veecsa is preparing to launch their latest application, Adobe Shotofop. Prior to making it available to the general public, they
plan to have a group within the company evaluate it to uncover potential issues.

Q1.6:

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

RR

Omkar has recently been brainstorming things that could go wrong in an effort to manage this.

Q1.7:
SS

Boogle is finding maintenance to be a very expensive part of the development process. This is due to Boogle not accurately

identifying the impact each bug has on the business.

Q1.8:

LL

Antony is developing a program to determine whether a number is prime. They double-check corner cases, such as the inputs
0, 1 and 2, to be sure of what the answers should be.

Q1.9:
TT

PiedPiper is developing a new software product and plans to repeat this process until completion: create a prototype, gather

user feedback, mitigate risk, and make an improved prototype.

Q1.10:

GG

FloorMart is a travel agency that arranges global tours. They are encountering problems where customers can book tickets for
tours that are already sold out because multiple bookings are processed simultaneously. Harry proposes using this technique

to identify the root cause of this issue automatically.

Q1.11:

DD

The highly-anticipated game, AldenRing, is about to be launched. Six months before its release, Devforce distributes a pre-
release version to a select group of users.

Q1.12:
NN

Mesla Inc. recently found that developers were making commits directly to the main branch without input from others. To

address this, they introduced a policy requiring at least one other developer familiar with the codebase to review and approve
any changes before they are committed.

Q1.13:
HH

MunchyRoll recently hired new developers who have expressed concerns about critical code being difficult to read and filled

with bugs. To address this, Gwen, a senior developer, decides to conduct a series of structured meetings with the team to
review and resolve the issues in that code.

Q1.14:
JJ

Yushu is working on a new game for GogoWeimer. GogoWeimer sets a goal to complete the physics module within the next

two months.

Question 2. Code CoverageQuestion 2. Code Coverage (25 points)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

You are given the following code. (You can scroll down to see the all the code) In this question, we consider the entire program

when calculating coverage.

Now consider the silly_goose function. Answer the following questions.

(a) (4 points)

What is the minimum number of test cases required for 100% statement coverage? Enter a whole number.

Your answer here.

ANSWER: 1

(b) (4 points)

What is the minimum number of test cases required for 100% branch coverage? Enter a whole number.

Your answer here.

ANSWER: 2

(c) (4 points)

What is the minimum number of test cases required for 100% path coverage? Enter a whole number.

Your answer here.

ANSWER: 3 (There are only 3 feasible paths, so covering 3 paths is 100%)

void coverage(bool a, bool b){
 if (a || b) {
 std::cout << "1";
 }
 if (!b || !b || !b || !b) {
 std::cout << "2";
 }
}

void silly_goose(bool a, bool b, bool c){
 if ((a || !b) || (c && !a)) {
 STMT_1;
 }
 if ((c && !b) || (a || b)) {
 STMT_2;
 }
 if ((!a && !b) && c){
 STMT_3;
 }
}

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

10
11
12

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

(d) (4 points)

How many of the STMT statements does the test case (true, true, true) cover? Write your answer as a whole number. (We
are asking for the statement coverage without the denominator.)

Your answer here.

ANSWER: 2

(e) (4 points)

How many of the branch directions does the suite [(false, false, true), (false, true, false), (false, false,
false)] cover? Write your answer as a whole number. (We are asking for the branch coverage without the denominator.)

Your answer here.

ANSWER: 6

(f) (5 points)

Would EECS481 Homework 1b have been easier or harder if students had only been asked to provide 1% (acylic) path coverage
for full points (instead of the listed coverage requirements)? Justify your answer in 5 sentences or less. Your answer should

reference details about the program in question.

Your answer here.

ANSWER:

+1 Concludes that 1% path coverage would be harder than original requirements

+2 Mentions the fact that the number of paths grows exponentially/quickly as the complexity of the program (e.g., number of

conditional statements like number of ifs) increases.

+1 Mentions or describes HW1b (libpng) and mentions number of conditionals/lines in the libpng program

+1 Mentions that path coverage is harder than branch coverage and/or statement coverage

Sample Answer:

It would almost certainly be harder.

In class we discussed how the number of acyclic paths through a method with N conditional statements grows with 2^N. Each

input can only visit one path, so obtaining coverage of 2^N paths requires 2^N inputs. By contrast, branch coverage for N
conditional statements can, in the best case, be covered with two inputs: one that always takes true paths and one that always

takes false paths.

The question asks specifically about libpng from HW1b. In that program, the png_read_info() method alone (one single 170-line

method in the 95,000 line program) has 30+ conditional statements. Obtaining 1% path coverage of such a method could
require 10,737,418 test inputs (1% of 2^30) — much, much more than the 50 that suffice for 36% branch coverage. Even if the

math approximation is off "slightly" (say, by a factor of 100,000), path coverage is still harder.

Question 3. Short AnswerQuestion 3. Short Answer (24 points)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

This question (a-b) concerns bug triage. Consider the bug report problems from the reading "What Makes a Good Bug
Report?". For each bug below, list an uncommonuncommon problem (as reported by that reading) that could cause an organization to
mistakenly assign the bug report the wrong priority, then give a potential example of such a scenario using a real, specific tool

or assignment from EECS 481 as a basis.
For each bug, please limit your answer to at most 4 sentences for that bug.

Each of the following questions (c)-(e) gives a pair of concepts. It can be a pair of techniques, a pair of tools, or a pair of
processes, etc. Consider the reading "Analyze This! 145 Questions for Data Scientists in Software Engineering". For each pair,

choose a quoted respondent question from Section 4.1 of that reading, copy the exact quote into the answer space, and then
argue that one element of the pair would be better at answering that quoted question than the other.

For example, given the pair Code Inspection vs. MeasurementCode Inspection vs. Measurement, you might copy the quote "How long does it take to gain a

payoff from moving to new software-writing tools?" and then argue that Measurement is more relevant to answering that

(a) (3 points)

A bug that causes dropdown menu items to be displayed out of order.

Your answer here.

ANSWER:

+1 Valid uncommon problem from reading that relates to this specific bug

+0.5 If the problem is common (eg. incomplete information, steps to reproduce)

+1 Valid explanation of why it could cause organization to mistakenly assign this specific bug wrong priority

+1 Good example from EECS 481 that relates to the given bug

Sample Answer: You were given the wrong expected behavior. Some user of the eecs481 website reports that the current

homework spec isn’t in the right place in the dropdown menu and they struggled to find it at first. In reality, they expected the
hw4 spec to show up first since it is the current homework, but the 481 website lists homeworks by chronological order. This

could cause this “bug” to be given priority that it shouldn’t be since it isn’t really a bug.

(b) (3 points)

A bug that causes some images to swap locations.

Your answer here.

ANSWER:

+1 Valid uncommon problem from reading that relates to this specific bug

+0.5 If the problem is common (eg. incomplete information, steps to reproduce)

+1 Valid explanation of why it could cause organization to mistakenly assign this specific bug wrong priority

+1 Good example from EECS 481 that relates to the given bug

Sample Answer: You were given the wrong version number. The bug reporter may be using an earlier version, but report that
they are using the latest version, causing the organization to mistakenly assign too much priority to the bug. The hw0 spec on

last semester’s EECS 481 website could be putting some images in the wrong place, and this could mistakenly be reported as
this semester’s website.

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

question.

For each question, after copying the quote, please use at most four sentences. Use each quote at most once.

(c) (3 points)

A/B Testing vs. Risk

Your answer here.

ANSWER:

Quote

+1 Student correctly provided quote from the reading that is relevant to A/B Testing and Risk

+0.5 quote provided but is irrelevant to A/B Testing and Risk

+0 No quote or quote provided was not in the reading

Argument quality

+1 Student clearly explains why either A/B Testing or Risk is better suited, providing logical and well-supported reasoning

+0.5 Argument is valid but underdeveloped or lacks clarity (e.g. sufficient support for claims are not provided, student does not

clearly identify which option would be better)

+0 No argument provided or argument is invalid

Conciseness

+1 Student stayed within 4 sentences

+0 Student went 3+ sentences over the limit

(d) (3 points)

Regression Testing vs. Integration Testing

Your answer here.

ANSWER:

Quote

+1 Student correctly provided quote from the reading that is relevant to regression/integration testing

+0.5 quote provided but is irrelevant to regression/integration testing

+0 No quote or quote provided was not in the reading

Argument quality

+1 Student clearly explains why either Regression Testing or Integration Testing is better suited, providing logical and well-

supported reasoning

+0.5 Argument is valid but underdeveloped or lacks clarity (e.g. sufficient support for claims are not provided, student does not

clearly identify which option would be better)

+0 No argument provided or argument is invalid

Conciseness

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

+1 Student stayed within 4 sentences

+0 Student went 3+ sentences over the limit

(e) (3 points)

Fuzz Testing vs. the Eraser Dynamic Analysis

Your answer here.

ANSWER:

Quote

+1 Student correctly provided quote from the reading that is relevant to Fuzz Testing and the Eraser Dynamic Analysis

+0.5 quote provided but is irrelevant to Fuzz Testing and the Eraser Dynamic Analysis

+0 No quote or quote provided was not in the reading

Argument quality

+1 Student clearly explains why either Fuzz Testing or the Eraser Dynamic Analysis is better suited, providing logical and well-

supported reasoning

+0.5 Argument is valid but underdeveloped or lacks clarity (e.g. sufficient support for claims are not provided, student does not

clearly identify which option would be better)

+0 No argument provided or argument is invalid

Conciseness

+1 Student stayed within 4 sentences

+0 Student went 3+ sentences over the limit

(f) (6 points)

Suppose you are asked the following question during a technical interview (the particular programming language isn’t
relevant for this problem): “Write a method that takes a singly-linked list as input and reverses that list.” Write 2 questions you

can ask of the interviewer before you start implementing the solution. For each, use a direct quote from the reading "The
Google Technical Interview" to support your answer. Copy the exact quote into the answer space as part of your answer. (Do

not use a question that literally occurs in the reading, such as "How big could the input be?". Instead, create a new question
and support it with a general claim from the reading.)

Your answer here.

ANSWER:

For each question: +1 pt Good question that doesn’t occur in the reading. Questions that just repeated something from the

reading without being more specific didn't receive this point (eg. "Can I have an example?")

+1 Valid quote from reading

+1 Supports question with the quote. Most question/quote pairs require at least a brief explanation on how the quote supports
the question.

Sample partial answer (full answer needs two questions):

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

You are an engineering manager who must decide whether or not to employ pair programming for a series of tasks (questions

(g)-(k)).

Use the same sort of mathematical reasoning generally described in slides 18 and 19 of the lecture. For each task, write the
pair programming cost divided by the solo programming cost (e.g., if the pair cost is 91 and the solo cost is 100, write 0.91).

Use two figures after the decimal point (e.g., 1.23). The interpretation of the various features (e.g., "fewer total lines" or "fewer
total defects") is as covered in class.

Should the list be reversed in place or should we return a new list?

"First, make sure you understand the problem properly. It helps to clarify assumptions before diving in too deeply, and if you
are confused about the question, do ask for examples, or for the question to be reworded. The interviewer will often not offer

information until you ask for it." This question helps clarify some assumptions about the result and output which could change
the solution, and it is necessary to ask this question because often the interviewer won’t always give much information about

how the output should be.

(g) (1 points)

Task 1: 50,000 LOC program, Coding at 25 LOC/hour, Defect rate of 10 defects / KLOC, Defect fix time of 20 hours / defect,

Pair programming results in 15% fewer total defects, Pair programming results in 15% fewer total lines of code.

Your answer here.

ANSWER:

Individual: 2000 + 500*20 = 12000

Pair: 42500/25 + 425 * 20 = 10200

0.85

See slide 19 of the pair programming lecture for pair calculation reasoning.

Answers that mistakenly treated pair programming as 2x or 15% slower receive half-credit

(h) (1 points)

Task 2: 50,000 LOC program, Coding at 25 LOC/hour, Defect rate of 10 defects / KLOC, Defect fix time of 20 hours / defect,
Pair programming results in 20% fewer total defects, Pair programming results in 10% fewer total lines of code.

Your answer here.

ANSWER:
Individual: 2000 + 500*20 = 12000

Pair: 45000/25 + 400 * 20 = 9800

0.82

See slide 19 of the pair programming lecture for pair calculation reasoning.

Answers that mistakenly treated pair programming as 2x or 15% slower receive half-credit

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

(i) (1 points)

Task 3: 75,000 LOC program, Coding at 50 LOC/hour, Defect rate of 10 defects / KLOC, Defect fix time of 5 hours / defect, Pair
programming results in 10% fewer total defects, Pair programming results in 12% fewer total lines of code.

Your answer here.

ANSWER:
Individual: 1500 + 750*5 = 5250

Pair: 66000/50 + 675 * 5 = 4695

0.89

See slide 19 of the pair programming lecture for pair calculation reasoning.

Answers that mistakenly treated pair programming as 2x or 15% slower receive half-credit

Question 4. Mutation TestingQuestion 4. Mutation Testing (20 points)

Consider the following code.

(a-1) (3 points) Your mutants can swap between the operators <, == and <= (but no other operators). Your mutants can swap
between the numbers 1, 0 and -1 (but no other numbers). If you are only allowed to mutate the base (line 2), how many

mutants are killed by the test case with input n = 3?

Your answer here.

ANSWER: 0

(a-2) (3 points) Your mutants can swap between the operators <, == and <= (but no other operators). Your mutants cannot

change anything else. If you are only allowed to mutate the loop guard (line 7), how many mutants are killed by the test case
with input n = 2?

Your answer here.

ANSWER: 2

int func2(int n) {
 if (n <= 1) {
 return n;
 }
 int a = 1;
 int b = 4;
 for (int i = 1; i < n; ++i)
 {
 int c = b - (2 * a);
 a = b;
 b = c;
 }
 return b;
}

1
2
3
4
5
6
7
8
9

10
11
12
13

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

(b) (4 points)

Suppose that a group of researchers find very convincing evidence in favor of the competent programmer hypothesis but also
find very convincing evidence against the coupling effect hypothesis. What would this mean for mutation testing? For credit,

include a direct quote from An Analysis and Survey of the Development of Mutation Testing (part of the HW3 spec) to support
your argument. (After copying the quote, use at most four sentences.)

Your answer here.

ANSWER:
+1 includes a quote that is relevant to their response from An analysis and survey of the development of mutation testing

+1 Defines correctly what the competent programmer hypothesis (CPH) is and what the coupling effect hypothesis (CEH) is

The CPH says that when programmers do make mistakes they are small and limited to a small section (typically one line) of

code.

The CEH says that complex/additional problems emerge from multiple small mistakes (like the ones made by programmers

according to the CPH) combining together

+1 Describes how the CPH and CEH relate to mutation testing

Mutation testing simulates small mistakes confined to one line. The CPH supports that the mistakes introduced by mutation
testing are similar to the ones made by real developers.

Traditional mutation testing uses the CEH to justify using only first order mutants. Since the CEH says that complex problems
are made up of small mistakes, complex problems can be detected simply by looking for small mistakes (i.e., first order

mutants)

+1 Concludes that mutation testing cannot rely solely on first order mutants. Higher order mutants or other strategies must

be used.

Since some issues are not just a combination of small problems (first order mutants), detecting only small problems (first

order mutants) will not detect all issues.

Alternatively: +1 if the student claims that the CEH is unnecessary if the CPH is true. Since the CPH claims that competent

programmers only make small mistakes, issues that are more complicated than a small mistake must be extremely rare /
non-existent. Therefore, mutation testing can continue to use only first order mutants.

(c-1) (10 points)

Consider the following Python function distracted_goldstine(n):

We have exactly three test cases: -1, 1 and 16.

Your task is to create two different first-order mutants of the distracted_goldstine(n) function by modifying only theonly the

branch conditionsbranch conditions (i.e., the expressions in if, elif, and while statements). Create your two mutants by editing the two copies
of the code below. You can edit only the lines with the branch conditions; do not change other lines.

Each of your mutants should fail a different and non-zero number of these test cases. For example, your first mutant might fail
one test, while your second mutant fails two tests.

def distracted_goldstine(n):
 if n < 0:
 return False
 low, high = 0, n
 while low <= high:
 mid = (low + high) // 2
 mid_squared = mid * mid

 if mid_squared == n:
 return True
 elif mid_squared < n:
 low = mid + 1
 else:

1
2
3
4
5
6
7
8
9

10
11
12
13

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

Each mutant should have exactly one modification from the original code (i.e., each of your mutants should be a first-order

mutant). For example, you may change comparison operators (e.g., == to !=, < to <=), logical operators, or negate conditions.
Do not add or remove entire statements; focus only on modifying the conditions.

Below are two code boxes where you will create your mutants. Click on the lines with branch conditions (they are editable) to
modify them. Remember to modify only the conditions in the if, elif, and while statements. You should not change other

lines.

Mutant 1:Mutant 1:

Mutant 2:Mutant 2:

+1 for each mutant that is killed by 0 test cases

+3 for each mutant that is killed by >0 test cases
+1 if both mutants are killed by 0 test cases

+1 if both mutants are killed by >0 test cases, but the kill number is the same
+4 if both mutants are killed by >0 test cases and the kill number is different

Question 5. Dynamic AnalysisQuestion 5. Dynamic Analysis (17 points)

You have developed a dynamic analysis tool, called Marbles, that aims to quickly identify potential memory leaks. A memory
leak occurs when memory is allocated but never deallocated. In one run of a program, every allocation at address x must be
paired with a deallocation at exactly address x. Failing to do so indicates a memory leak.

Marbles works by tracking and logging memory allocations and deallocations during program execution. Because dynamic

analyses can be slow, you design Marbles so that it runs and analyzes multiple different threads of the same subject program
code simultaneously. Each concurrent execution is assigned a unique thread number (e.g., Thread 1, Thread 2, etc.). Marbles

collects a single unified log of information about each memory operation, potentially including the allocated memory address,
deallocated memory address, size, and the thread number.

HoweverHowever, the Marbles instrumentation may be buggy, so the log may be missing events or details or may contain spurious

events. Marbles reports memory leaks based on analyzing its log file, so this may result in false positives and/or false
negatives.

In this context:

A false positive occurs when Marbles incorrectly reports the presence of a memory leak, but no leak is actually possible (on any

def distracted_goldstine(n):
 if n < 0:
 return False
 low, high = 0, n
 while low <= high:
 mid = (low + high) // 2
 mid_squared = mid * mid

 if mid_squared == n:
 return True
 elif mid_squared < n:
 low = mid + 1
 else:

def distracted_goldstine(n):
 if n < 0:
 return False
 low, high = 0, n
 while low <= high:
 mid = (low + high) // 2
 mid_squared = mid * mid

 if mid_squared == n:
 return True
 elif mid_squared < n:
 low = mid + 1
 else:

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2
3
4
5
6
7
8
9

10
11
12
13

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

execution).

A false negative occurs when Marbles fails to report a memory leak, but a leak is actually possible based on the source code
(on some executions).

Consider the programs below. We have run Marbles on each of them. The log file for each analysis is also shown below. For

each program, you are asked to determine if Marbles would report a memory leak based on the Marbles log file. In addition,
you will also be asked to determine whether Marbles has incurred any false positives/negatives during the analysis process.

NOTE: NOTE: You may need to scroll down on some of the code snippets to view the full program and/or log file.

(a-1) (1 points) True / FalseTrue / False: Marbles would report a memory leak for program p1(), based on the log file.

ANSWER: True

The code does not deallocate memory and Marbles reports this correctly.

True

False

(a-2) (1 points) True / FalseTrue / False: Marbles incurred a false positive or false negative for p1.

ANSWER: False
No false positives/negatives. Marbles worked correctly in this instance.

True
False

(b-1) (1 points) True / FalseTrue / False: Marbles would report a memory leak for program p2(), based on the log file (the allocation at
0x8210 is not paired with a deallocation).

ANSWER: True
The Marbles log file mistakenly records the y = &x[16] as an allocation (of 16 bytes at 0x8210). However, there is no memory

leak: that it not actually a new allocation.

True
False

void p1() {
 // Dynamically allocates two pointers (4 bytes each)
 int* ptr1 = new int;
 int* ptr2 = new int;
 *ptr1 = 42;
 *ptr2 = 84;
 delete ptr1;
}

Marbles log file:
Thread 1: Allocate 4 bytes at address 0x7000
Thread 2: Allocate 4 bytes at address 0x7100
Thread 2: Allocate 4 bytes at address 0x7200

void p2() {
 // Dynamically allocates a new buffer (150 bytes)
 char* x = new char(150);
 if (foo) {
 char* y = &x[16];
 }
 delete[] x;
}

Marbles log file:
Thread 1: Allocate 150 bytes at address 0x8000
Thread 2: Allocate 150 bytes at address 0x8200
Thread 1: Deallocate bytes at address 0x8000

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

(b-2) (1 points) True / FalseTrue / False: Marbles incurred a false positive or false negative for p2, during its logging process.

ANSWER: True
False positive. The Marbles log file has a spurious entry, causing it to mistakenly report a memory leak.

True
False

(c-1) (1 points) True / FalseTrue / False: Marbles would report a memory leak for program p3(), based on the log file.

ANSWER: False

In this run, the Code correctly deallocates memory, and Marbles accurately logs these operations.

True

False

(c-2) (1 points) True / FalseTrue / False: Marbles incurred a false positive or false negative for p3, during the logging process.

ANSWER: True
The code actually contains a potential memory leak, but Marbles does not report it. This is a false negative.

True
False

(d-1) (1 points) True / FalseTrue / False: Marbles would report a memory leak for program p4(), based on the log file.

ANSWER: True

Although code does correctly deallocate all memory, the Marbles log does not contain the deallocation of arr2. Marbles thus

True

False

void p3() {
 // Dynamically allocate arr1 (32 bytes)
 int* arr1 = new int[8];
 // Dynamically allocate arr2 (12 bytes)
 int* arr2 = new int[3];
 // Deallocate arr2
 delete[] arr2;
 // Deallocate arr1
 if (random(0,100) <= 50) {
 delete[] arr1;
 }
}

void p4(){
 // Dynamically allocates arr1 (40 bytes)
 int* arr1 = new int[10];
 // Dynamically allocates arr2 (24 bytes)
 int* arr2 = new int[6];
 // Deallocates arr2
 delete[] arr2;
 // Deallocate arr1
 delete[] arr1;
}

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

reports a memory leak.

(d-2) (1 points) True / FalseTrue / False: Marbles incurred a false positive or false negative for p4, during the logging process.

ANSWER: True

False positive, Marbles did not work correctly in this instance.

True

False

(e) (3 points)

Compare and contrast two approaches for race condition detection: the dynamic analysis tool Eraser and static code
inspection. Describe one situation in which the former would work well and the latter would not, then describe a situation in

which the latter would work well and the former would not. Reference some of the human factors associated with code
inspection from the lectures and reading. (Use at most six sentences.)

Your answer here.

ANSWER:
Answers may vary. Dynamic Analysis (e.g., Eraser using Lockset Algorithm): detects race conditions during program execution

with high accuracy which results in performance overhead and limited path coverage. Static analysis provides broader code
coverage without runtime impact but can often create false positives and lacks runtime context. The lecture slides discussed a

number of human factors. For example, on the positive side for formal code inspection, some report that formal code
inspection meetings uncover deeper, more important bugs. On the negative side, formal code inspection can typically only

handle a small number of lines before attention wanes. Perhaps most critically, formal code inspection does not require any
inputs to the program and does not require the code to be working correctly (e.g., to compile). By contrast, Eraser requires the

program to compile and run, and it requires a good set of inputs, but after that it is automatic.

(f) (3 points)

You are developing a real-time trading system that must process market data and be able to execute trades with low latency.
Describe how dynamic analysis can help ensure the performance and the reliability of your system. What is the relationship

between dynamic analysis utility and test suite coverage? (Use at most 3 sentences.)

Your answer here.

ANSWER:

Answers may vary. Dynamic analysis can be useful for measuring runtime behavior, identifying performance bottlenecks, and
detecting concurrency issues which may not be able to be detected by static analysis. For example, dynamic analyses can

provide not only "execution time" profiling, but also measurements of particular events (e.g., how often a function is called or
how often a resource is allocated). However, dynamic analyses are only as good as their inputs. For example, consider a "real-

time trading system" program that uses bubblesort. If it is only tested on small examples (e.g., two or three trades that must
be sorted before being processed), it may appear to meet real-time constraints. However, that same dynamic analysis applied

to that program with much larger, more indicative inputs would show a much slower running time. A dynamic analysis cannot
reveal information about lines of code it does not execute.

(g) (3 points)

In the lectures we discussed an implantable medical device and an associated bug. In that context, describe a situation in

which a static analysis technique could be a better approach than a dynamic analysis technique to ensure security. (Use at
most three sentences.)

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

Your answer here.

ANSWER:

Answers may vary. In class we discussed the Abboty Labs pacemaker, where a bug capable of delivering a shock to patients
was only found after deployment. Static analysis can spot coding errors and design issues before deployment. In that

particular instance, the instance was a security vulnerability accessible via networking. A static analysis might check that
network inputs are correctly sanitized before being used. By contrast, a dynamic analysis technique might require running the

pacemaker, at which point a failing test might do real damage. (A technique like mocking could mitigate this, but may be
difficult to do correctly.) Note that this question just asks about static analysis in general: this could include something like

code review or code inspection, not necessarily an automated static analysis.

Extra CreditExtra Credit

(1) What is your favorite part of the class so far? (1 point)

Your answer here.

(2) What is your least favorite part of the class so far? (1 point)

Your answer here.

(3) In the context of HW2, how would the SAGE tool from the "Automated Whitebox Fuzz Testing" paper compare to EvoSuite

on jsoup? Demonstrate that you have read the paper critically and tie it in to your experiences with HW2 (i.e., what did EvoSuite
do badly at for 481 specifically?), going beyond a Generative AI summary. (2 points)

Your answer here.

(4) If you read any other optional reading, identify it and demonstrate to us that you have read it critically, going beyond a
Generative AI summary. (2 points)

Your answer here.

(5) Did you use ChatGPT or any Generative AI tool on this exam? Do such tools help with this sort of exam? Should we allow
ChatGPT on Exam #2? (Remember, free ChatGPT is allowed, so you're not cheating. This is to help us improve the course, not

to get you in trouble.) (2 points)

Your answer here.

Honor Pledge and Exam Submission

You must check the boxes below before you can submit your exam.

I have neither given nor received unauthorized aid on this exam.

I am ready to submit my exam.

minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

Submit My Exam

Once you submit, you will be able to leave the page without issue. Please don't try to mash the button.

The exam is graded out of 100 points.
minutes remaining

Hide Time

Manual Save

Navigation
Question 1

Question 2
Question 3

Question 4
Question 5

Extra Credit
Pledge & Submit

