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Abstract—We report our experience with SAPFIX: the first
deployment of automated end-to-end fault fixing, from test case
design through to deployed repairs in production code'. We have
used SAPFIX at Facebook to repair 6 production systems, each
consisting of tens of millions of lines of code, and which are
collectively used by hundreds of millions of people worldwide.

INTRODUCTION

Automated program repair seeks to find small changes to
software systems that patch known bugs [1], [2]. One widely
studied approach uses software testing to guide the repair
process, as typified by the GenProg approach to search-based
program repair [3].

Recently, the automated test case design system, Sapienz
[4], has been deployed at scale [5], [6]. The deployment of
Sapienz allows us to find hundreds of crashes per month,
before they even reach our internal human testers. Our software
engineers have found fixes for approximately 75% of Sapienz-
reported crashes [6], indicating a high signal-to-noise ratio [5]
for Sapienz bug reports. Nevertheless, developers’ time and
expertise could undoubtedly be better spent on more creative
programming tasks if we could automate some or all of the
comparatively tedious and time-consuming repair process.

The deployment of Sapienz automated test design means that
automated repair can now also take advantage of automated
software test design to automatically re-test candidate patches.
Therefore, we have started to deploy automated repair, in a
tool called SAPFIX, to tackle some of these crashes. SAPFIX
automates the entire repair life cycle end-to-end with the
help of Sapienz: from designing the test cases that detect
the crash, through to fixing and re-testing, the process is fully
automated and deployed into Facebook’s continuous integration
and deployment system.

The Sapienz deployment at Facebook, with which SapFix
integrates, tests Facebook’s apps using automated search over
the space of test input sequences [7]. This paper focuses on the
deployment of SapFix, which has been used to suggest fixes
for six key Android apps in the Facebook App Family, for
which the Sapienz test input generation infrastructure has also
been deployed. These are Facebook, Messenger, Instagram,
FBLite, Workplace and Workchat. These six Android apps
collectively consist of tens of millions of lines of code and
are used daily by hundreds of millions of users worldwide to
support communication, social media and community building
activities.

IThe first author, Alexandru Marginean, undertook the primary SAPFIX
implementation work. The remaining authors contributed to the design,
deployment and development of SAPFIX; remaining author order is alphabetical
and not intended to denote any information about the relative contribution.

In order to deploy such a fully automated end-to-end detect-
and-fix process we naturally needed to combine a number of
different techniques. Nevertheless the SAPFIX core algorithm
is a simple one. Specifically, it combines straightforward
approaches to mutation testing [8], [9], search-based software
testing [6], [10], [11], and fault localisation [12] as well as
existing developer-designed test cases. We also needed to
deploy many practical engineering techniques and develop
new engineering solutions in order to ensure scalability.

SAPFIX combines a mutation-based technique, augmented by
patterns inferred from previous human fixes, with a reversion-as-
last resort strategy for high-firing crashes (that would otherwise
block further testing, if not fixed or removed). This core fixing
technology is combined with Sapienz automated test design,
Infer’s static analysis and the localisation infrastructure built
specifically for Sapienz [6]. SAPFIX is deployed on top of
the Facebook FBLearner Machine Learning infrastructure [13]
into the Phabricator code review system, which supports the
interactions with developers.

Because of its focus on deployment in a continuous in-
tegration environment, SAPFIX makes deliberate choices to
sidestep some of the difficulties pointed out in the existing
literature on automated program repair (see Related Work
section). Since SAPFIX focuses on null-dereference faults
revealed by Sapienz test cases as code is submitted for review
it can re-use the Sapienz fault localisation step [6]. The focus
on null-dereference errors also means that a limited number of
fix patterns suffice. Moreover, these particular patterns do not
require additional fix ingredients (sometimes known as donor
code), and can be applied without expensive exploration.

We report our experience, focusing on the techniques
required to deploy repair at scale into continuous integration
and deployment. We also report on developers’ reactions and
the socio-technical issues raised by automated program repair.
We believe that this experience may inform and guide future
research in automated repair.

The SAPFIX project is a small, but nevertheless distinct
advance, along the path to the realisation of the FiFiVerify
vision [10] of fully automated and verified code improvement.
The primary contributions of the present paper, which reports
on this deployment of SAPFIX are:

1) The first end-to-end deployment of industrial repair;

2) The first combination of automated repair with static and
dynamic analysis for crash identification, localisation and
re-testing;

3) Results from repair applied to 6 multi-million line systems;

4) Results and insights from professional developers’ feed-
back on proposed repairs.



Algorithm 1 frigger_create_fix, SAPFIX’s trigger fix creation
algorithm.
Input:

b_rev, the buggy revision
b_file, the blamed file: the file that contains the crash location
b_line, the blamed line: the line of the crash
s_trace, the stack trace of the crash
mid, the mid of the crash we are trying to fix
b_author, the blamed author: the author of b_rev
buggy_expressions, buggy expressions that Infer gives us. When we do not
have Infer data, this argument is null
high_firing_t, the high firing threshold
Output: P, a list of revisions that fix the crash under SAPFIX’s testing
1: strategy_priority := [template_fix, mutation_fix, diff _revert, partial_diff _revert|
2: Cp:=0 # Cp is the list of candidate fixes
3: if is_high_firing(mid, high_firing_t) then
4 Cp += diff_revert(b_rev)
5: Cp += partial_diff_revert(b_rev,b_file,b_line)
6: Cp += template_fix(b_rev,b_file,b_line, buggy_expressions)
7: Cp += mutation_fix(b_rev,b_file,b_line, buggy_expressions, s_trace)
8: P:=0
9: for all p € Cp do
10: if —repro_crash(p,mid) A pass_sapienz(p) N —sapienz_repro_mid(p,mid) A
pass_ci_tests(p) then
11: P+=p
12: for all s € strategy_priority do
13: Py :=filter(P, strategy(p € P) =s)
14:  if P, #0 then

# P is the list of patches that fix the bug

15: ps = select_patch(P)

16: publish_and_notify(ps,b_author)
17: for all p, € P\ {p,} do

18: publish_and_comment(py, ps)
19: return P,

20: return null

THE SAPFIX SYSTEM

This section describes the SAPFIX system itself, its algo-
rithms for repair and how it combines the components outlined
in the previous section.

The SAPFIX Algorithmic Workflow

Figure 1 shows the main workflow of SAPFIX. Algorithm 1
is the main algorithm of SAPFIX that drives the automated bug
fixing process. Using Phabricator, Facebook’s continuous inte-
gration system, developers submit changes (called ‘Diffs’) to be
reviewed. Sapienz, Facebook’s continuous search based testing
system, selects test cases to execute on each Diff submitted
for review [6]. When Sapienz triages a crash to a given Diff,
SAPFIX executes Algorithm 1. Line 1 in Algorithm 1 estab-
lishes the priority of fixes according to the strategy that SAPFIX
used to produce them. When multiple fix strategies produce
patches that pass all SAPFIX’s tests, we select fixes only from
the top priority strategy to report to developers. This prioriti-
sation approach avoids polluting developers’ review queues.

The template_fix and mutation_fix strategies (mentioned at
Line 1 of Algorithm 1) choose between template and mutation-
based fixes, favouring template-based fixes, where all else is
equal, but taking account of results from Infer static analysis
and also from linter reports on candidate fixes. Template fixes
come from another tool, Getafix [14] that generates patches
similar to the ones that human developers produced in the past;
the details will be described in a subsequent publication. For
the purposes of understanding the SAPFIX deployment, it can
be assumed that SAPFIX has available to it, a set of template
fix patterns harvested from previous successful fixes deployed
by developers.

If neither template-based nor mutation-based approach
produces a patch that passes all tests, SAPFIX will attempt
to revert Diffs that result in high-firing crashes. Lines 3-5 in
Algorithm 1 trigger the Diff revert strategies. SAPFIX triggers
these strategies only for high-firing crashes that block Sapienz
and other testing technologies and therefore need to be deleted
from the master build we are testing as soon as possible (even
if they would never ultimately leave the master build and make
it to production deployment). The revert strategies revert the
diffs, which thereby ‘deletes the change’ (made in the diff). In
practice that can mean deletion, addition, or replacement of
code in the current version of the system. For instance, if the
offending diff added code, then it is deleted whereas, if the
diff deleted code, then it is added back. If the Diff added lines
of code then reversion is simply an attempt at side-effect free
deletion. If the Diff removed lines of code, then reversion would
add them back. Either way (and for everything in-between),
conceptually speaking, reversion means to ‘delete the Diff’.

Between the two available Diff reversion strategies, SAPFIX
prefers (full) diff_revert, because partial_diff _revert is ex-
pected to have a higher probability of knock-on adverse
effects due to dependencies between the changes in the Diff
that introduced the crash. However, (full) diff _revert might
fail because of merge conflicts with the master revision
(new Diffs land every few seconds, while fix reporting can
take up to 90 minutes (see Figure 3). In those cases we
use partial_diff _revert. The changes that partial_diff _revert
produces are smaller and thus less prone to merge conflicts.

The recognition of a crash and the distinction between
different crashes requires a ‘crash hash’; a function that groups
together different crashes according to their likely cause. This
is a non-trivial problem in its own right. Facebook uses a crash
hash called a ‘mid’, the technical details of which are described
elsewhere [6]. For this discussion, the important characteristic
of a ‘mid’ is that it is an approximate (but reasonably accurate)
way of identifying unique crashes. It can be thought of, loosely
speaking, as a crash id. Improving the accuracy of such crash
hashes remains an interesting and important challenge for future
research [6].

Of course, we favour a fix rather than to simply attempt to
delete the offending code, but when the other fix strategies fail
to fix a high firing crash, SAPFIX suggests a Diff revert fix.
is_high_firing(mid,threshold) identifies high firing crashes: it
returns true if the crash with id mid fires more than threshold
times, and false otherwise. Finding a way to delete the right
code without affecting other subsequent Diffs is also a non-
trivial problem in a large scale and rapidly changing code base,
where new Diffs land every few seconds. This problem may
also benefit from further attention from the research community.

Lines 6-7 in Algorithm 1 trigger the template and mutation
fix strategies. Lines 9-11 look at the candidate fix patches in
Cp for the ones that indeed fixed the crash, without introducing
new bugs.

To identify whether a patch fixes a crash, SAPFIX uses
repro_crash and sapienz_repro_mid. repro_crash(rev,mid)
tries to reproduce mid in the revision rev using Sapienz’s
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SAPFIX workflow. When Sapienz triages a crash to SAPFIX, trigger_create_fix triggers the four fix strategies that create fix candidate (unpublished)

diffs. Next, SAPFIX tests the candidate fixes. The fix selection stage uses heuristics to select one diff out of the ones that pass all the tests and further publishes
it to notify the most relevant software engineer and add him or her as reviewer If the reviewer accepts the fix, SAPFIX lands it into the production workflow
of the Phabricator Continuous Integration system. SAPFIX abandons the fix candidate if the developer rejects it or he or she fails to review it within 7 days.

reproduction workflow. We cannot always assume that we have
available tests that reproduce a given crash, due to the well-
known problem of test flakiness [5], [15]. Therefore, SAPFIX
also uses sapienz_repro_mid(rev,mid) to inspect the results of
regular Sapienz runs over rey to see if any of them found mid.
Infer is also re-executed (automatically) on the patches it has
detected as a sanity check that static analysis also no longer
identifies the issue that SAPFIX seeks to fix.

To identify whether a patch might also introduce new crashes
or other issues, SAPFIX runs Sapienz multiple times over the
candidate fix in pass_sapienz(rev). Finally, pass_ci_tests(rev)
inspects the results of (previously existing) unit, integration,
and end-to-end tests in the Facebook continuous integration
and deployment infrastructure. If all these tests pass, SAPFIX
considers the patch to be a successful candidate to report to
engineers and adds it to P, at Line 11 in Algorithm 1.

Lines 12-19 in Algorithm 1 publish the successful candidate
patches. SAPFIX selects one of the published candidates and
requests a reviewer for this candidate through the Phabricator
code review system. The reviewer is chosen to be the software
engineer who submitted the Diff that SAPFIX attempted to fix.
This is the engineer who most likely has the technical context
to evaluate the patch.

Other relevant engineers are also subscribed to each Diff
published by SAPFIX to oversee the review process, according
to heuristics implemented, as standard for all Diffs, in the
Facebook code review process. Furthermore, some developers
specifically ask to be subscribed to (some or all) fixes, by
opting in with a so-called ‘butterfly’ subscription rule. As a
result, all Diffs proposed by SAPFIX are guaranteed to have
at least one (suitably qualified) human reviewer, but may have
many more, through these other routes to Diff subscription.

The function strategy(p) returns the strategy that SAPFIX
used to produce p. Line 13 selects, in Ps, all the successful
patches that the top priority strategy produced. Next, at Line
15, select_patch(P;) selects in p; the top priority patch from P;.
Currently, select_patch(P;) uses the following heuristics: select
the fix that Sapienz executed the most often; select the fix for

Algorithm 2 mutation_fix, SAPFIX mutation fix algorithm.
Input:

b_rev, the buggy revision that Sapienz blamed

b_file, the blamed file: the file that contains the crash location

b_line, the blamed line: the line of the crash

s_trace the stack trace of the crash

?buggy_expressions candidate buggy expressions that Infer gives us. When
we do not have Infer data, this argument is null.

Output: P, the list of bug fixing revisions

. crash_category := extract_crash_category(s_trace)

. if crash_category # "NPE” then

return 0

. if buggy_expressions # 0 then

return create_rev(add_null_check(b_file,b_line, buggy_expressions))

. else

Chuggy := top_of _s_trace(s_trace,b_file,b_line) ?

extract_dereferences(b_file,b_line) : extract_args(b_file,b_line)

8: P:=0

9: for all ¢ € Cpygqy do

10: P += create_rev(add_null_check(b_file,b_line,c))

11: return P
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which Sapienz executed the buggy statement the most often;
select the smallest fix. On Line 16, SAPFIX publishes p; and no-
tifies the developer by calling publish_and_notify(p,b_author).

Finally, on Lines 17-18, Algorithm 1 publishes the rest of
the patches from P; and comments with a preview of them on
ps. publish_and_comment(p, ps) publishes the candidate fix p
and adds an inline preview of p on the selected candidate fix p;.

Algorithm 2 is the SAPFIX mutation-based fixing algorithm.
Algorithm 2 currently only supports fixing Null Pointer Excep-
tion (NPE) crashes. We are currently in the process of extending
the mutation strategies to cater for other crash categories, but we
have already witnessed considerable success with NPE-specific
patching alone, which is encouraging. On Line 1, Algorithm 2
calls extract_crash_category to identify the category of crash.
If the category is not “NPE”, Algorithm 2 returns the empty set.
To extract the crash category, extract_crash_category looks at
the short message on the stack trace.

Lines 4-5 in Algorithm 2 check whether a more precise
cause of the NPE is known: i.e. which expressions in the
buggy statement caused the NPE by taking the value null. This
information can be obtained from Infer, in cases where both
Infer and Sapienz find the same NPE. When that happens
SAPFIX creates a single patch that guards b_line with null



checks for the buggy expression. On Line 5, Algorithm 2
creates a revision for this patch. The method add_null_check
uses eclipse JDT to parse the AST of the buggy file and to
add the null check before the buggy statement.

Lines 7-11 in Algorithm 2 handle the case when we do
not know which expressions are buggy. In this case, SAPFIX
identifies all the expressions in the buggy statement that
can potentially cause an NPE. For each such expression,
Algorithm 2 produces a candidate patch. SAPFIX tries each
of two simple mutations, which either return null or protect
potentially null-valued expressions with a null check. The
surrounding Facebook testing infrastructure will subsequently
tend to reject those patches that do not actually fix the bug
(such as those patches that inadvertently attempt to ‘fix’ the
wrong expression). Therefore, failure to fully localise the buggy
expression tends to affect efficiency but not effectiveness.

Infer helps to localise the likely NPE-raising expression,
but dynamic analysis can also help here, where Infer signal is
unavailable. Specifically, we analyse the position of the blamed
line of code in the stack trace (b_line) at Line 7 to obtain Cp,g,,
the set of candidate buggy expressions. If b_line is at the top
of the stack trace then top_of _s_trace(s_trace,b_file,b_line)
returns true. In this case, SAPFIX need only attempt to
fix expressions that are de-referenced, because the program
execution does not continue after b_line. extract_dereferences
extracts only the expression de-referenced at b_line.

If b_line is not at the top of the stack trace, it means that one
of the arguments of a function called at b_line is presumed to
have caused the NPE (further up in the stack trace). In this case
SAPFIX need only attempt to fix the arguments of functions in
b_line. extract_args extracts the function arguments at b_line.

Finally, Lines 9-10 in Algorithm 2 produce a patch, for each
candidate buggy expression in Cp,g,,. The patch guards b_line
with null check for the candidate buggy expression.

Sapienz: SAPFIX uses Sapienz to identify candidate crashes
that require fixing and to (partially) check that fixes pass the
original failing test(s), as well as generating new tests and a
partial approach to detecting some categories of knock-on issues
that the candidate might introduce. Sapienz uses multi-objective
Search Based Software Engineering (SBSE) [16] to automat-
ically design system level test cases for mobile apps [4], for
which it finds 100s of crashes per month, approximately 75% of
which are fixed by developers [0]. Like SAPFIX, Sapienz com-
ments to developers in Phabricator, the backbone Facebook’s
Continuous Integration systemz, which is used for code review,
handling more than 100,000 Diffs per week at Facebook [5].

Both Sapienz and SAPFIX are deployed on top of FBLearner,
Facebook’s Machine Learning (ML) platform through which
most of Facebook’s ML work is conducted [13]. There is not
space here to fully explain FBLearner, but the infrastructure
itself is covered in more detail elsewhere [13] and the use of
FBLearner as a substrate on which to deploy search based test-
ing is described in detail in the SSBSE 2018 keynote paper [0].

Zhttp://phabricator.org

Infer: SAPFIX uses Infer to assist with localisation and static
analysis of fixes proposed. Infer is deployed on the majority of
Facebook code and based on Separation Logic and bi-abduction
[17], [18], scaled to tens of millions of lines of code, thereby al-
lowing Infer to find thousands of bugs per year [19]. Infer is also
available as open source [20] and has been used elsewhere, in-
cluding AWS, Mozilla, Spotify. Like Sapienz, Infer is deployed
directly into Facebook’s internal continuous integration system,
where the two tools collaborate to highlight to developers those
bugs on which they agree [0]. At the time of writing such bugs
have a 98% fix rate, largely we believe because developers
have a localisation of both the likely root causing fault (from
Infer) and a consequent failure (from Sapienz). Nevertheless,
even for such highly ‘human fixable’ bugs, engineering effort
and skill could be better spent on other more creative and less
tedious engineering activities, thereby motivating our interest
in automated fault fixing through techniques like SAPFIX.

RESULTS

Table I presents the results of applying SAPFIX over a period
of three months to tackle NPEs detected by Sapienz as they
were submitted for code review. Each row denotes a crash
tackled by SAPFIX. Naturally, we periodically update the pool
of template fixes (something that occurred once during the first
three months of deployment, on the 9" of August 2018 as
shown in Table I). In total, to tackle the 57 crashes reported to
SAPFIX, 165 patches were constructed, of which roughly half
were constructed using templates and half using mutation-based
repair. Of these 165 patches, 131 correctly built and passed
all tests and were thus fix candidates. Of these 131 candidates,
55 were reported to developers, covering 55 of the 57 crashes
tackled by SAPFIX.

Figure 2 reports how
many times the template- 2
based and mutation-based
strategies produced at least
one candidate fix for each
of the 57 different crashes
from Table I. Although
SAPFIX favours templates
overall, it triggers both
strategies to be able to re-
test all patches produced in
parallel. Triggering both the
fix strategies also allows us to evaluate these two strategies in
isolation. Our results suggest that having both in the pipeline
leads to better overall success: In 55 of the 57 fix attempts,
either the mutation-based fix strategy or the templates produced
at least one fix candidate. Only in two cases did both strategies
fail (one failed to build and one failed re-testing). In 13 cases,
both the fix strategies produced at least one fix candidate. In
isolation, the mutation-based fix strategy produced at least one
fix candidate for 40 cases, while the templates did so in 28
cases. In 27 cases the mutation-based fix strategy alone was
able to produce a fix candidate, while in 15 cases the templates
alone produced a fix candidate.

Templates

15

Fig. 2. The number of times mutation-
based fix strategy and templates pro-
duced at least one patch to pass all tests.



Initial reactions were strongly positive: On seeing the very
first SAPFIX-proposed patch, the developer reviewing the patch
commented: ‘Definitely felt like a living in the future moment
when it sent me the diff to review. Super cool!’. As can be seen
from Table I, about half the fixes proposed by SAPFIX were
deemed, by developers, to correctly fix the failure. Of those
deemed correct, about half were landed ‘as is’, and half were
modified. Of those that were modified, about half were edited
by the developers, while half were simply reviewed by the
developer only after they had already fixed the bug themselves.
Of the (approximately) half of all proposed fixes that were not
ultimately landed into the code base, about half were deemed
incorrect by developers (would have side effects or failed to
tackle the true causes). For the remaining half that were not
landed, the proposed fix was simply abandoned (after 7 days
with no response from the developer).

During its first three months of deployment, SAPFIX at-
tempted to revert 18 Diffs (14 fully and 4 partially), where
these Diffs contained high firing crashes, that could not be fixed
by the templates or mutation-based fixing approaches. These
Diff revert recommendations were all declined by developers
(and not included in Table I); it seems developers are (perhaps
understandably) unwilling to simply revert their hard work.

Can SAPFIX fix pre-existing crashes?

The standard deployment mode, for which SAPFIX was
designed (and is currently deployed), attempts to fix newly
arising failures (crashes) as they are submitted in Diffs and
detected as buggy by Sapienz. For this use-case, the developer
has recent relevant context on the changes relating to the
fix. Such relevancy has proved pivotal to the successful
deployment (and human fix rates) for both Infer and Sapienz,
as explained elsewhere [5]. Nevertheless, as a stretch goal
we also experimented with targeting SAPFIX at pre-existing
crashes that had reached production partly because Sapienz had
failed to detect them (we are still working on the development
of Sapienz [6], but no testing technology can be expected to
stop every failure).

For pre-existing crashes, the developer reviewing the fixes
proposed by SAPFIX has less context on the code and fix
proposed. We split the results into two broad categories:
long-standing (more than 3 months, the width of the Sapienz
triage window [6]) and recent (first seen in the last 3 months,
so potentially triagable by Sapienz, but missed by it). These
long-standing crashes are also those for which the developer
would be likely to have the least context, so it would be
informative to see how many were landed by developers.

In both cases (recent and long-standing) we cannot use
precise localisation, since we do not have available Sapienz
triage data. SAPFIX’s template_fix and mutation_fix strategies
rely on a blamed line to produce candidate fixes. However,
for the pre-existing crashes that we target here, we do have
access to multiple stack traces. Therefore, in this mode of
deployment SAPFIX identifies the longest common path across
200 sampled stack traces, starting from the top of the stacks.
The bottom-most line of this common path that is inside our
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Fig. 3. SAPFIX runtime: the time that SapFix requires to publish a fix.

codebase (not library or framework code) becomes the blamed
line. Since this blamed line does not correspond to an identified
Diff, SAPFIX instead uses a standard default approach, used
across the company, to identify the developer to whom we
should report the issue detected.

Table II presents the results for these fix candidates. These
results are for a three day deployment window only. After three
days, we switched off this experiment to avoid unnecessarily
spamming our developers with multiple fix candidates from
this comparatively untried-and-tested mode of deployment. In
total, over the three days, SAPFIX constructed 946 candidates,
of which it reported 195 to developers; 117 for recent crashes
and 78 for long-standing crashes.

Had we left the experiment running longer, the proportion of
landed fixes could only have increased, so we were encouraged
that approximately 15% were landed within this three day
period (which included a weekend; typically a quiet period for
developer activity at Facebook [21]). Also, interestingly, we
observed that the proportion of fixes landed was not notably
different between recent crashes and longer-standing crashes.
This observation gave us hope that we may ultimately be able
to deploy this technology to track down and fix longer-standing
crashes that developers tend to find harder to fix.

Timing issues

Figure 3 presents a time-to-fix box plot (from when SAPFIX
is first notified of a need to fix, to the publication of a proposed
fix to a developer). The median time from fault detection to
fix publication to a developer is approximately one hour. More
specifically, as shown in Figure 3, the median is 69 minutes,
with a relatively tight inter-quartile range (65-73 minutes) and
a worst case approximately 1.5 hours, and the fastest fix being
reported to the developer 37 minutes after the crash was first
detected.

As shown in Figure 3, the overall range of observed values
is wide (37..96 minutes). This is because the timing figures
are not only influenced by the computational complexity of
fixing but also by the variations in workloads on the continuous
integration and deployment system. Since SAPFIX is deployed
in a highly parallel, asynchronous environment, the time from
detection to publication can be influenced more by the demand
on the system and the availability of computing resources than
by the fix problem’s inherent computational cost.



TABLE I
NULL POINTER EXCEPTION SAPFIX:“#P” IS THE TOTAL NUMBER OF PATCHES; “#M” IS THE NUMBER OF MUTATION FIX PATCHES; “#G” IS THE NUMBER
OF TEMPLATE PATCHES; “#PASS TESTS” IS THE NUMBER OF PATCHES THAT PASSED ALL OUR TESTS; “#— BUILD” IS THE NUMBER OF PATCHES THAT
FAILED TO BUILD; “#— SAP” IS THE NUMBER OF PATCHES THAT FAILED SAPIENZ TESTING; “#— FIX” IS THE NUMBER OF PATCHES THAT FAILED TO FIX
THE CRASH; “#— PR.” IS THE NUMBER OF PATCHES THAT WERE NOT PUBLISHED BECAUSE THE RULE THAT PRODUCED THEM, WAS SUBSUMED BY ONE
WITH A HIGHER PRIORITY; “SAPFIX LAND” SPECIFIES WHETHER SAPFIX LANDED THE PATCH INTO PRODUCTION; “DEVELOPERS’ FEEDBACK” REPORTS
DEVELOPERS’ INSIGHTS. THE TABLE’S TIME FORMAT IS MM.DD/HH:MM. NOTE THAT ON THE 9" AUGUST 2018 WE UPDATED OUR TEMPLATES WITH
BETTER VERSIONS THAT COVERED MORE TYPES OF NPE FIXES. WE REPORT THE SUMMARIES OF OUR RESULTS FOR BOTH TIME PERIODS AND OVERALL AS
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06.26/09:34 | Facebook 3 0 3 0 3 0 0 0 No No No No Yes | Not reviewed in 7 days.
07.06/09:29 | Facebook 6 0 6 0 6 0 0 0 No No No No Yes | Not reviewed in 7 days.
07.10/02:30 | Facebook 4 0 4 0 4 0 0 0 No No No Yes No | Wrong fix: null guard for an expression that cannot be null.
07.11/06:04 | Facebook 2 2 0 2 0 0 0 0 No No No Yes No | Wrong fix: null guard for an expression that cannot be null.
07.15/11:55 | Facebook 2 2 0 2 0 0 0 0 Yes No No No No | Fix accepted without comments.
07.16/03:42 | Facebook 4 4 0 4 0 0 0 0 Yes No No No No | Macro: “superlike”
07.16/09:27 | Instagram 1 1 0 1 0 0 0 0 No No No Yes No | Not sure about the side effects of the fix.
07.18/12:06 | Facebook 4 0 4 0 4 0 0 0 No No No Yes No | Wrong fix: null guard for an expression that cannot be null.
07.20/02:39 | Facebook 3 2 1 2 1 0 0 0 Yes No No No No | Fix accepted without comments.
07.20/03:01 | Facebook 1 1 0 1 0 0 0 0 No Yes No No No | Correct fix: fixed by the developer before seeing the sapfix.
07.20/03:33 | Instagram 2 2 0 2 0 0 0 0 No Yes No No No | Correct fix: fixed by the developer before seeing the sapfix.
07.20/05:41 | Instagram 1 1 0 1 0 0 0 0 No Yes No No No | Correct fix: “Oh this is cool! I didn’t notice this diff until now.
T have addressed the issue in this diff Dxxxxxxx but I wish
T've seen this earlier. :-)
07.20/05:50 | Facebook 2 2 0 1 0 1 0 0 No No No No Yes | Not reviewed in 7 days.
07.31/04:21 | Facebook 7 0 7 0 7 0 0 0 Yes No No No No | Fix accepted without comments.
08.02/01:49 | Facebook 1 1 0 1 0 0 0 0 No No Yes No No | Correct fix, landed by the developer.
08.03/01:32 | Facebook 1 1 0 1 0 0 0 0 Yes No No No No | Fix accepted without comments.
08.03/01:56 | Instagram 3 3 0 3 0 0 0 0 No Yes No No No | Correct fix: fixed by the developer before seeing the sapfix.
08.08/00:28 | Facebook 2 2 0 2 0 0 0 0 No Yes No No No | Correct fix: fixed by the developer before seeing the sapfix.
Mutation Fix Overall 24 - - 23 - 1 0 0 4 5 1 2 1 | Fix attempts with at least 1 passing test patch: 13/18
Templates Overall 25 - - - 25 0 0 0 1 0 0 2 2 | Fix attempts with at least 1 passing test patch: 6/18
Total NPE Fixes: 18 | 49| 24 25| 48 | 1 0 0| 5 5 1| 4 3]
On 08.09.2018 we updated our templates.
08.20/07:46 | Facebook 4 0 4 0 0 4 0 0 No No No No Yes | Not reviewed in 7 days.
08.20/07:47 | Facebook 3 2 1 1 0 2 0 0 No No No Yes No | Wrong fix: null guard for an expression that cannot be null.
08.20/07:47 | Facebook 2 1 1 1 1 0 0 0 No No Yes No No | Correct fix, landed by developer
08.20/08:56 | Facebook 1 0 1 0 1 0 0 0 No No No Yes No | “The fix might mask a race condition”
08.20/08:56 | Facebook 1 0 1 0 1 0 0 0 No No No No Yes | Not reviewed in 7 days.
08.21/02:46 | Facebook 4 2 2 2 1 1 0 0 No No No Yes No | Fixing the crash, but not a reasonable fix.
08.22/02:51 | Facebook 2 2 0 2 0 0 0 0 Yes No No No No | Fix accepted without comments.
08.22/02:52 | Facebook 2 0 2 0 2 0 0 0 Yes No No No No | Fix accepted without comments.
09.05/09:04 | Messenger 1 0 1 0 1 0 0 0 No No No Yes No | fix at the wrong line (this was a bug in sapfix :( )
09.05/09:04 | Messenger 1 0 1 0 1 0 0 0 No No No Yes No | Wrongly triaged.
09.05/09:15 | Messenger 2 2 0 2 0 0 0 0 No No No No Yes | Not reviewed in 7 days.
09.07/09:12 | Facebook 4 2 2 2 2 0 0 0 No No No Yes No | Wrong fix: null guard for an expression that cannot be null.
09.07/09:12 | Instagram 1 0 1 0 1 0 0 0 No No No No Yes | Not reviewed in 7 days.
09.07/09:12 | Messenger 2 1 1 1 0 1 0 0 No No Yes No No | Correct fix, landed by developer.
09.07/09:13 | Messenger 3 2 1 1 1 0 0 1 No No No No Yes | Not reviewed in 7 days.
09.07/10:20 | Instagram 1 1 0 1 0 0 0 0 No No No No Yes | Not reviewed in 7 days.
09.08/09:29 | Facebook 9 0 9 0 6 3 0 0 Yes No No No No | Macro: image with killing bugs
09.08/09:29 | Messenger 1 0 1 0 0 1 0 0 No No No No Yes | Not reviewed in 7 days.
09.08/09:29 | WorkPlace 2 1 1 1 1 0 0 0 Yes No No No No | Fix accepted without comments.
09.08/10:07 | Facebook 1 1 0 1 0 0 0 0 No No Yes No No | Correct fix, landed by developer.
09.08/10:17 | Facebook 1 1 0 1 0 0 0 0 No No No No Yes | Not reviewed in 7 days.
09.08/10:21 | Messenger 2 0 2 0 2 0 0 0 No No No No Yes | well this is cool (abandoned b/c not reviewed in time)
09.09/09:12 | WorkChat 2 1 1 1 0 1 0 0 No No Yes No No | Correct fix, landed by the developer.
09.09/09:12 | Facebook 6 2 4 2 3 1 0 0 Yes No No No No | Fix accepted without comments.
09.11/01:37 | Instagram 4 3 1 0 1 0 3 0 Yes No No No No | Macro: “whatatimetobealive3”
09.18/14:12 | Facebook 3 3 0 2 0 1 0 0 No No No No Yes | Not reviewed in 7 days.
09.18/14:13 | Instagram 4 2 2 0 1 1 2 0 No No Yes No No | Correct fix, landed by the developer.
09.18/14:14 | WorkPlace 3 3 0 1 0 1 1 0 No No No No Yes | Not reviewed in 7 days.
09.18/14:14 | Instagram 4 4 0 2 0 0 2 0 No No No Yes No | “Pretty sure this isn’t the cause of the crash (Which is already fixed)”
09.18/14:14 | Facebook 2 1 1 1 0 1 0 0 No No No Yes No | Wrongly triaged.
09.18/14:15 | Facebook 5 2 3 1 3 0 1 0 No Yes No No No | Correct fix: fixed by the developer before seeing the sapfix.
09.18/14:16 | Messenger 6 1 5 1 4 1 0 0 No No No No Yes | “We do want to crash because we wanna know when it can be null.”
09.18/14:16 | Facebook 2 2 0 1 0 0 1 0 No No No Yes No | “This isn’t the right fix at all, but it is really cool :)”
09.18/14:15 | WorkChat 5 1 4 1 4 0 0 0 No No No Yes No | Rejected without comments.
09.18/14:17 | Facebook 7 4 3 4 3 0 0 0 Yes No No No No | Fix accepted without comments.
09.18/15:16 | FBLite 2 1 1 1 1 0 0 0 Yes No No No No | “Ig2m :0”
09.18/15:46 | Facebook 3 3 0 3 0 0 0 0 No No No No Yes | Not reviewed in 7 days.
09.19/10:42 | WorkPlace 5 2 3 1 2 2 0 0 Yes No No No No | “It would be nice if the bot would also add ‘@Nullable””
“to ImageOptions. Probably hard to do though :)”
09.19/14:00 | Facebook 3 3 0 2 0 0 1 0 No Yes No No No | Correct fix: fixed by the developer before seeing the sapfix.
Mutation Fix Overall 56 - - | 40 - 4 11 1 5 1 3 6 7 | Fix attempts with at least 1 passing test patch: 27/39
Templates Overall 60 - - - 43 17 0 0 4 1 2 4 6 | Fix attempts with at least 1 passing test patch: 22/39
Total NPE Fixes: 39 | 116 | 56 60| 83 | 21 11 1| 9 2 5| 10 13|
Results for our entire data set.
Mutation Fix Overall 80 - - 63 - 5 11 1 9 6 4 8 8 | Fix attempts with at least 1 passing test patch: 40/57
Templates Overall 85 - - 68 17 0 0 5 1 2 6 8 | Fix attempts with at least 1 passing test patch: 28/57
Total NPE Fixes: 57 165 | 80 85 131 22 11 1 14 7 6 14 16
%o 100 | 49 51 80 13 6 1 25 12 11 24 28

Total Correct Fixes(%) | 27/57(48%) |




TABLE II
SAPFIX EXPERIMENT RESULTS ON PRE-EXISTING CRASHES WHERE WE
LACK SAPIENZ TRIAGE DATA. “#C” IS THE NUMBER OF CRASHES. THE
OTHER COLUMNS ARE THE SAME AS THOSE IN TABLE I.

‘ Strategy ‘ Failed Patches ‘ ‘ Developer says:

Crash Type #P | #M  #G | #Pass  #— #-  #- | #C | SAPFIX Wrong Unkn.
Tests Build Sap Pr. Land

Recent Crashes 547 | 288 259 213 166 65 103 | 117 16 35 66
% 100 | 53 47 39 30 1219 | 100 14 29 56
Longstanding Crashes | 399 | 230 169 139 132 39 8| 78 13 24 41
% 100 | 58 42 35 33 10 22| 100 17 30 53
Total 946 | 518 428 352 298 104 192 | 195 29 59 107
% 100 | 55 45 37 31 11 21| 100 15 29 56

Lessons Learned and Future Work

Our philosophy in deploying automated repair was to focus
on industrial deployment, rather than further research. This
philosophy has strongly influenced all of the decisions we took.
For example, it has been known for some time that random
search over a suitably-constrained (fault localised) search space,
can be surprisingly effective at finding candidate repairs [1].
Indeed, several fixes reported in early work on repair were
found in the very first generation [22].

Our earlier work on Sapienz had fortunately led to scalable
and sufficiently precise fault localisation, which contributed to
the 75% fix rate for human developers, reported on elsewhere
[6]. The existing deployment of Sapienz, together with these
results from the literature gave us confidence that we could
deploy a relatively simple end-to-end repair approach as a
starting point. We also sought to re-use developer-defined patch
templates as a starting point, knowing that the scientific litera-
ture demonstrated that this can work [23], but also in the firm
belief that this would lead to more human-acceptable patches.

Finally, we were also motivated by more recent work on
automated repair that has highlighted issues concerning weak
oracles [24]. To ameliorate this problem, we use a combination
of static and dynamic analysis to check, re-check, localise
and identify the code that needs to change. We also use a
combination of regeneration of search based tests with Sapienz,
and human-written end-to-end tests, to provide a testing envi-
ronment in which to check the repairs constructed by SAPFIX.

Humans still play the role of final gatekeeper with SAPFIX:
no repair is landed into production without human oversight,
so the repair system, although fully automated is, nevertheless,
at this point merely a recommender system. This final human
gatekeeper phase also provides us with insights from real-world
developers’ reactions when presented with automated repair
candidates, on which we report.

We target Null Pointer Exceptions (NPEs) in the first instance
because NPEs are such an important category of fault [25].
NPEs are also a highly prevalent fault category: Coelho
et al. [26] analyze a set of 6000 Android stack traces that they
extracted from more than 600 Android apps. They observe that
more than 50% of the crashes are NPEs. This lower bound of
50% has been replicated for the top 1,000 android apps, using
Sapienz automated testing [27] and we also found, at Facebook,
that NPEs constitute at least 50% of the crashes triaged by
Sapienz to developers. All of this empirical evidence pointed
to NPEs denoting a natural high impact class of faults on

which to direct our initial focus. NPEs also have the advantage,
for automated repair, that fixes tend to be localised and small.
As such, we anticipated a higher probability that mutation
operators, combined with identification of fix patterns may
lead to successful deployment.

Much remains to be done, but we believe our initial deploy-
ment has allowed us to garner some experience, insights and
initial results that may be useful to other researchers and prac-
titioners, which we summarise in the remainder of this section.
End-to-end automated repair can work at scale in indus-
trial practice: We have existential proof that developers do
accept some automated patches; approximately one quarter
of our patches landed into production code and a further
quarter were deemed correct but not landed, either because the
developer tweaked the fix or because they had already fixed
the crash themselves when they first saw the proposed fix. This
is encouraging. Clearly much more research and development
work is needed and we certainly do not underestimate the
challenges that lie ahead. Nevertheless, our results suggest that
the hitherto open question as to whether end-to-end automated
repair could be deployed in industrial practice is now answered,
allowing the community to devote its full energy to tackling
the many (exciting and impactful) open problems.
Developers are a useful final oracle: Automated oracles [28],
and testing and verification will hopefully advance in the
years to come, thereby widening the remit of automated repair.
However, the developers’ role as final gate keeper is likely to
remain important for repair deployment while we await such
further advances. Work on automated oracles can best support
this aspect of the repair agenda by seeking to reduce (rather
than replace) developer effort.

Sometimes deletion (reverting) is useful: high firing crashes
in a master build of the system, even if never ultimately
deployed to customers, will block further testing, so deleting
them can be useful. This is an important use-case where the
previously observed apparent predilection of automated repair
to simply delete code (or to mask a failure, rather than tackling
the root cause) is a behaviour that we seek; it can re-enable
testing in the presence of a high-firing crash. Therefore,
although deletion should be an anti-pattern for automated repair
more generally [29], it is deployable in this specific use-case.
However, more research is needed on the problem of finding
the right code to delete without affecting subsequently-landed
code modifications. Program slicing techniques [30], [31]
might find in this repair-orientated problem, a new application
domain. We also found that developers are resistant to Diff
reversion (perhaps understandably). More work is therefore
required on partial deletion and crash-masking, so that the
effects of a crash can be suppressed while minimally affecting
onward computation, not only nor even necessarily for
end-user release, but also to support further testing.

Sociology: Developers may prefer to clone-and-own proposed
fixes, rather than to simply land them (approximately one
quarter of fixes deemed correct by engineers were, nevertheless,
edited by them prior to landing). More work needs to be done
on the sociology of automated repair; the interfaces between



human and machine in repair.

Automated Explanations: Developers often showed a readi-
ness and interest in communicating with the SAPFIX bot (even
though they knew it to be a bot), as indicated by their comments
and feedback. There is a significant, and as-yet untapped,
potential for dialog between the automated repair tool and
engineer. More work is needed on techniques for repair (and
more generally program improvement [2], [32]) that interact
with the developer to ‘discuss’ proposed changes. Sapienz uses
an automated experimental framework [6] that seeks to scale up
best practice empirical software engineering experimentation.
This could be a starting point for automated experimentation.
Combine static and dynamic analysis: We have found that
both static and dynamic analysis are complementary and
mutually re-enforcing more generally [5], but also here in
the specific case of automated repair. More work is needed to
find blended analyses [33] that target repair.

Root cause analysis: SAPFIX might simply remove the
symptom rather than addressing the root cause; masking the
failure rather than fully fixing it. Although failure masking
remains useful to unblock testing, techniques for identifying
root causes of failures and appropriate (automatable)
remediation remains very pressing problem.

Side Effects: Without fully automated oracles, our ultimate
defence against side effects remains, as it does with human
fixes, the developers and reviewers of Diffs. Much more work
is still needed on automated test design and automation of
(strong) oracles so that we can have greater confidence that
passing all tests makes it unlikely that some knock-on effect
is caused by a patch. Ultimately one would prefer to verify
the absence of side effects; the FiFiVerify vision [10].

RELATED WORK

SAPFIX is grounded in the approach to software engineering
known as Search Based Software Engineering (SBSE) [34],
[35]; the space of potential fixes to a software systems is
considered to be a search space constructed from small modifi-
cations to an existing system under test. In the deployment of
SAPFIX we do not claim any strong novelty in terms of the
core repair algorithm. In fact, SAPFIX does not use any of the
repair approaches from the literature on repair and SBSE, since
their sophistication might have inhibited scalability. Instead
we favoured using more simple approach in which a patch
is simply a higher order mutant [9], [36] and we perform a
single generation search over this space; essentially little more
than random search, with some smart selection. As such, our
results may best be thought of as a base line [37], against
which to measure the advances we hope to see produced by
future research and development.

Automated fault finding

There are a several approaches that generate crashing test
inputs for Android apps. SAPFIX is a general automated bug
fixing technique that can be used in conjunction with any of
these approaches: given a test case that one of these approaches

produces, SAPFIX tries to generate patches for the bug that
the failing test case reveals.

Currently, SAPFIX uses Sapienz [4], [6] and Infer [38], but
could use other test generation techniques, such as AndroidRip-
per [39], an automated test case generation technique based
on GUI ripping [40], ACTEVE [41] or Collider [42], concolic
testing systems for Android [41], A3E [43], a static data flow
test tool, and/or other static analyses.

SAPFIX could also use Dynodroid [44], a feedback directed
random test tool or Android Monkey, which are other popular
Android testing tools. Although Sapienz has previously been
shown to outperform both [4], these earlier results also indicated
that the three techniques are, nevertheless, complementary.

There are also model based test tools such as FSMdroid [45]
and fuzzers such as Fuzzdroid [46] that could be used to
complement our results. It is likely that any or all of the
techniques listed above (and many more that we could not
list for brevity) might find additional faults not found by
Sapienz and could thereby complement our initial deployment
of SAPFIX. More generally, any static or dynamic analysis
tool that scales to tens of millions of lines of code and 100k+
commits per week could be used as either a replacement or a
complement to our use of Sapienz and/or Infer.

Automated fault fixing (repair)

SAPFIX is a simple realisation of Automated Program Repair,
a topic that has been the subject of much research interest for
over a decade [3], [47], [48], [49], [50], partly building on
research on SBSE that has been a topic a research for more
than two decades [34], [35]. In the present paper we do not
seek to make significant novel contributions to the underlying
science of automated repair, but rather to demonstrate, explain
and bear witness to the real world applicability these research
agendas on Automated Repair, Automated Test Case Design
and SBSE.

Much related work exists on the topic of repair alone, so
we cannot hope to do justice to all of it here. In the remainder
of this section, we briefly review recent related work on Auto-
mated Program Repair and its differences and similarities to our
deployment of SAPFIX. A more detailed survey can be found
in the work of Monperrus [51]. According to the classification
of Monperrus, SAPFIX is an offline behavioral repair approach.

Behavioral repair implies changing the source code of the
buggy program. It requires an oracle to identify whether or not
the bug is successfully fixed. Monperrus identifies three types
of such oracle: test suites (the most closely related to SAPFIX),
pre- and post- conditions, and abstract behavioral models [52].

Unlike the (many) other behavioral repair approaches in
the existing literature [3], [48], [53], [54], [55], SAPFIX uses
three different oracles to asses the quality and correctness of a
fix: test cases from Facebook’s CI, crash triggering sequences
of Ul events (similar to the work of Tan ef al. [56]), and
human reviewers. One novelty of our work derives directly
from our industrial deployment; we are able to rely on expert
engineers to act as the final arbiter of correctness in each case
of a deployed repair.



This is the first time that professional engineers have played
this role in the repair literature. It is also, simultaneously, an
empirical evidence to support the claim that, at least there do
exist automated program repairs that are, ipso facto, acceptable
to expert professional software engineers.

Our SAPFIX approach targets Android NPEs and draws on
templates automatically learned from human testers. Previously,
Tan et al. [56] studied a set of Android crashes from Github
to identify a set of 8 mutation operators that are often used by
Android developers to fix bugs. One of their mutation operators
is ‘Missing Null Check’, which is similar to our NPE mutation
operators in the mutation fix strategy. Cornu ef al.. have also
targeted NPEs for repair [23]. NPEFix uses a predefined
template-based approach similar with SAPFIX’s templates.

SemFix [57] uses symbolic execution and code synthesis.
Angelix [53] is an extension of SemFix that improves scalability
and applicability by enhancing the symbolic execution stage.
PAR [55] also uses repair templates to fix common types of
bugs in Java programs. One of their templates is also a “Null
Pointer Checker” that is parameterized by the variable name.
PAR randomly applies the templates and validates the fix.

Nopol [54] is an automated bug fixing tool for two types
of bugs: buggy if conditions and missing preconditions. In
the case of missing preconditions, Nopol adds a guard (if
statement), similar to our mutation fix operator for NPEs. Nopol
synthesizes the fix, using oracles (input-output pairs) to guide
component based patch synthesis [58].

Although SAPFIX represents the first industrial deployment
of end-to-end repair (from automated test design through to fix
deployment), there have been previous deployments of other
forms of automated code change, both in industry, and to
open source development communities. For example, Google’s
Tricorder system is reported to recommend fixes [59]. However,
Tricorder fixes are typically manually specified along with the
analysis check, whereas Sapfixes are detected and checked by
automatically-constructed tests as with SAPFIX. Automated
refactoring has also been widely studied [60] and has found
deployment at scale in industry [61]. However, refactoring seeks
to apply known-to-be semantically safe changes; essentially al-
tering syntax without disrupting semantics. Therefore, although
undoubtedly important, refactoring is less challenging than
repair, which necessarily affects semantics as well as syntax.

The Repairnator system was first deployed in 2017 [62]
to suggest repairs to Github Java projects. Repairnator uses
existing test suites in these open source projects to identify
crashes so, unlike SAPFIX, it does not offer end-to-end test
generation to repair. However, like SAPFIX, Repairnator does
provide for the continuous deployment of repair techniques
at considerable scale.

CONCLUSIONS AND FUTURE WORK

The SAPFIX system is now running in continuous integration
and deployment. This is the first time that automated end-to-end
repair has been deployed into production on industrial software
systems in continuous integration and deployment. Much
remains to be done. Our repairs aim to tackle the most prevalent

(yet arguably also the most simple) bugs, fixable by small
patches, comparatively easily checked by the final human gate-
keeper. As such, our paper tackles few, if any, of the many inter-
esting and exciting open research problems for automated repair.
SapFix patches tend to ameliorate rather than fix root causes,
which remains an open problem. Nevertheless, even masking a
newly-landed failure can be useful to unblock automated testing
of other recent code changes. We share the lessons we learned
from the deployment of SAPFIX in this paper seeking to provide
additional input to the development of this challenging but
important research field from a practical industrial perspective.
We hope thsi contributes to on-going and further research
and development on Automated Program Repair, Automated
Software Testing and Search Based Software Engineering.
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