
Program Synthesis

(Part 2)

2

Recall…
• FlashFill: generate string transformations from examples

3

Recall…
• WebRobot: generate web automation programs by “watching” what you do

4

Recall…

“Specification” “Program”

• Program synthesis

5

Recall…
• How to synthesize programs from input-output examples

• By systematically searching within a context-free grammar

• Check if program satisfies examples

• One approach: top-down search algorithm

6

Recall…
• How top-down search works…

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e
…

…

…

This is a “search tree”

7

Recall…
• Context-Free Grammar (CFG):

• This CFG defines a set of programs

x 1

x + x x + 1 1 + x

x + x + x x + x + 1 x + 1 + x 1 + x + x …

• Goal: find a program in this set that satisfies a given example

e → x
| 1
| e + e

“All programs that can
use x, 1 and +.”

8

This Lecture
• Programming-by-Example -> Programming-by-Demonstration

• PBE: specification is input-output example

• PBD: specification is execution trace

• “Trace” in this lecture: a sequence of instructions executed

• But “demonstration” can be interpreted more broadly..

• Use WebRobot to illustrate how PBD works

• Some recent development of WebRobot

• Demos/figures..

9

WebRobot demo (one more time!)
• Let’s (re-)watch the full WebRobot demo..

• Pay attention to the demonstration

10

Demonstration (Action Trace) in WebRobot
• Action 1: drag-and-drop.

• Recorded action: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

11

• Action 1: drag-and-drop.

• Recorded action:

 CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Selector: locates an element on the webpage

Demonstration (Action Trace) in WebRobot

12

Webpage ≈ (DOM) Tree

13

Webpage ≈ (DOM) Tree

html

head
…

script
…

main
…

id div div div
…

section
…

div
…

body

14

DOM Selectors
/html/body/main/div[3]/section/div/div/div[1]

15

html

head
…

1

2

1
2

3

4

3script
…

main
…

id div div div
…

4

56section
…

5

div6
…

body

DOM Selectors
/html/body/main/div[3]/section/div/div/div[1]

16

• Action 1: drag-and-drop.

• Recorded action:

 CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Selector: locates an element on the webpageLocates data from input

Demonstration (Action Trace) in WebRobot

17

• Action 1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

• Action 2: Click(/html/body/main/div[3]/section/…/button[2])

Demonstration (Action Trace) in WebRobot

18

• Action 2: Click(/html/body/main/div[3]/section/…/button[2])

• Action 3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Demonstration (Action Trace) in WebRobot

19

• Action 3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

• Action 4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Demonstration (Action Trace) in WebRobot

20

• Action 4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

• Action 5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

Demonstration (Action Trace) in WebRobot

21

• Action 5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

• Action 6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

Demonstration (Action Trace) in WebRobot

22

Demonstration (Action Trace) in WebRobot
• Action 6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

• Action 7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

23

Demonstration (Action Trace) in WebRobot
• Action 7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

• Action 8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

24

Start To See Repetitions?

So does WebRobot!

25

WebRobot Detects Repeating Patterns

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• Find the pattern in the trace?

26

WebRobot Detects Repeating Patterns

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• Find the pattern in the trace?

27

How Do We Automate Data Scraping?
• Now we’ve identified the pattern…

• But how can we automate this task?

• Write program!

• … based on the identified pattern

28

What Should The Program Look Like?
1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

What is one program that can
automate this task?

29

What Should The Program Look Like?

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• Different (actually, many) ways to write the program…

• What “properties” should these programs have?

• In terms of what they do, rather than how they look

30

Property 1: Reproduce Trace

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• When executed, program should reproduce actions in trace

• First action executed by program is first action in trace

• Same for second, third, …, last actions

31

Property 2: Generalize Trace

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• When executed, program should generalize the trace

• Reproduce trace + produce at least one more action

9: some action not seen before

32

Let’s Look At Some Programs..
• For each program, ask two questions:

• Does it reproduce trace?

• Does it generalize trace?

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

33

Program 1
• Trace itself

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

Trace

Reproduce?

Generalize?

Pros? Cons?

34

Program 2
• Trace + one more action in the end

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

Scrape(/html/body/main/div[3]/section/…/div[3]/addr)

Trace

Reproduce?

Generalize?

Pros? Cons?

35

Program 3
• Using a loop

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

Reproduce?

Generalize?

• What does it do?

• Does it reproduce/generalize trace? And why?

Pros? Cons?

36

Program 3
• Using a loop

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

Reproduce?

Generalize?

• What does it do?

• Does it reproduce/generalize trace? And why?

• Can you write a different loopy program?

Pros? Cons?

37

Program 3
• Another loopy program..

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

For i = 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

• But which one is “better”?

38

Let’s Look At These Programs: Pros & Cons

Trace itself

Trace + One Action

Loop

Pros Cons

Does not generalize

Can generalize Generalization may
be wrong

More reasonable
generalization

Can reproduce

Easy to synthesize

Potentially harder
to synthesize

39

Let’s Look At These Programs: Pros & Cons

WebRobot synthesizes loopy programs!

Trace itself

Trace + One Action

Loop

Pros Cons

Does not generalize

Can generalize Generalization may
be wrong

More reasonable
generalization

Can reproduce

Easy to synthesize

Potentially harder
to synthesize

40

How To Synthesize Loopy Programs?
• Trace -> Program: find a program that generalizes the given trace

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Specification: Trace Program with loops

Exam 2 does NOT cover
the rest of lecture!

41

Take A Step Back..
• Previously, programming-by-example

• Specification: input-output pairs

• Program: defined by context-free grammar

• Synthesis approach: top-down search

e → x
| 1
| e + e

(2,4)

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e
…

…

…

42

Take A Step Back..
• Previously, programming-by-example

• Specification: input-output pairs

• Program: defined by context-free grammar

• Synthesis approach: top-down search

• Now, programming-by-demonstration

• Specification:

• Program:

• Synthesis approach:

43

Take A Step Back..
• Previously, programming-by-example

• Specification: input-output pairs

• Program: defined by context-free grammar

• Synthesis approach: top-down search

• Now, programming-by-demonstration

• Specification: a sequence of actions

• Program: still context-free grammar (but a different one)

• Synthesis approach:

44

WebRobot Grammar
Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

45

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This entire
thing is a

“program”

46

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”

47

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”

48

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

49

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

50

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

Also a “statement”!

51

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

Also a “statement”!

52

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program P ::= S; …; S

Statement S ::= Click(DOM-selector)

 | Scrape(DOM-selector)

 | CP(input-selector, DOM-selector)

 | Enter(string, DOM-selector)

 | foreach var in children(DOM-selector) do { P }

 | while(true) do { P; Click(DOM-selector) }

DOM-selector ::= a_normal_DOM_selector

 | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

Also a “statement”!

This is a “program”!

53

Take A Step Back..
• Previously, programming-by-example

• Specification: input-output pairs

• Program: defined by context-free grammar

• Synthesis approach: top-down search

• Now, programming-by-demonstration

• Specification: a sequence of actions

• Program: still context-free grammar (but a different one)

• Synthesis approach:

54

Any Ideas?
• What’s fundamental in program synthesis?

• What’s difference between PBE vs. PBD?

• Anything we can borrow from PBE to solve PBD?

55

Synthesis = Search + Check

Search in
grammar

Check against
specification

Candidate program

Correct or not?

Program
Synthesis =

56

Synthesis = Search + Check

Search in
grammar

Check against
specification

Candidate program

Correct or not?

Program
Synthesis =

PBE = Top-down
search

Check against
examples

57

Synthesis = Search + Check

Search in
grammar

Check against
specification

Candidate program

Correct or not?

Program
Synthesis =

PBE = Top-down
search

Check against
examples

PBD = ?? ??

58

WebRobot = Rewrite + Trace Semantics

Rewrite-based
search

Check against
trace

Candidate program

Correct or not?

WebRobot =

59

WebRobot = Rewrite + Trace Semantics

Rewrite-based
search

Check against
trace

Candidate program

Correct or not?

WebRobot =

• Still use an interpreter to run the program..

• But not a normal interpreter!

• A new interpreter based on “trace semantics”

• Idea: it runs program but logs actions program executes

60

WebRobot = Rewrite + Trace Semantics

Rewrite-based
search

Check against
trace

Candidate program

Correct or not?

WebRobot =

• Use both grammar and trace!

• Idea: identify some repeating pattern from trace, replace a

sequence of repetitive actions by a loop

61

WebRobot = Rewrite + Trace Semantics
1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

For i = 1, 2, … do:

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

62

WebRobot = Rewrite + Trace Semantics

Rewrite-based
search

Check against
trace

Candidate program

Correct or not?

WebRobot =

• Use both grammar and trace!

• Idea: identify some repeating pattern from trace, replace a

sequence of repetitive actions by a loop

• Challenge: many different pattens, many different ways to

replace —> need to track a large number of rewrites

63

WebRobot Recap
• Automatically generate web automation scripts from user

interactions with web browser

• Tasks: data scraping, data entry, form filling, etc.

64

Switch Gears…

WebRobot

(PLDI 2022)

SemanticOn

(UIST 2022)

65

Can WebRobot Automate This Task?
• Go to “The Best Street Photographers of All Time”

• Scrape all images with at least two people interacting with

each other

66

Scrape Images with People Interacting

67

68

69

70

71

72

73

74

Can WebRobot Automate This Task?
• Go to “The Best Street Photographers of All Time”

• Scrape all images with at least two people interacting with

each other

75

What’s “New” In This Task?
• Scrape images (rather than text)

• “At least two people interacting with each other” — a new

form of condition!

• How to write program with this new logic?

76
UIST 2022 Best Paper Honorable Mention Award

SemanticOn (UIST 2022)

77

SemanticOn Demo

https://www.youtube.com/watch?v=OmJVaji-GJI
https://www.youtube.com/watch?v=eM3un7IpORQ

78

Key Idea: “Neurosymbolic”
• Synthesized programs use both symbolic and neural

components

• Use loop to iterate over all images

• Use neural net to check if to scrape an image

79

That’s All
• April 17 — In Person Guest Lecture by Derek Gaston (Department

of Energy)

• April 22 — Guest Lecture by Natalia Sanchez (Darktrace, UM alum)

• April 25 — Exam 2

• April 26 — All Course Materials Due

