
Program Synthesis

(Part 2)
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Recall…
• FlashFill: generate string transformations from examples



3

Recall…
• WebRobot: generate web automation programs by “watching” what you do 
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Recall…

“Specification” “Program”

• Program synthesis
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Recall…
• How to synthesize programs from input-output examples


• By systematically searching within a context-free grammar


• Check if program satisfies examples


• One approach: top-down search algorithm 
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Recall…
• How top-down search works… 

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e
…

…

…

This is a “search tree”
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Recall…
• Context-Free Grammar (CFG): 

• This CFG defines a set of programs

x 1

x + x x + 1 1 + x

x + x + x x + x + 1 x + 1 + x 1 + x + x …

• Goal: find a program in this set that satisfies a given example

e → x
| 1
| e + e

“All programs that can 
use x, 1 and +.”
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This Lecture
• Programming-by-Example -> Programming-by-Demonstration 


• PBE: specification is input-output example 


• PBD: specification is execution trace 


• “Trace” in this lecture: a sequence of instructions executed 


• But “demonstration” can be interpreted more broadly..


• Use WebRobot to illustrate how PBD works


• Some recent development of WebRobot 


• Demos/figures.. 
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WebRobot demo (one more time!)
• Let’s (re-)watch the full WebRobot demo..


• Pay attention to the demonstration
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Demonstration (Action Trace) in WebRobot
• Action 1: drag-and-drop.


• Recorded action: CP( input[1], /html/body/main/div[3]/section/div/div/div[1] )
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• Action 1: drag-and-drop.


• Recorded action: 


   CP( input[1], /html/body/main/div[3]/section/div/div/div[1] )

Selector: locates an element on the webpage

Demonstration (Action Trace) in WebRobot
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Webpage ≈ (DOM) Tree
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Webpage ≈ (DOM) Tree

html

head
…

script
…

main
…

id div div div
…

section
…

div
…

body
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DOM Selectors
/html/body/main/div[3]/section/div/div/div[1]



15

html

head
…

1

2

1
2

3

4

3script
…

main
…

id div div div
…

4

56section
…

5

div6
…

body

DOM Selectors
/html/body/main/div[3]/section/div/div/div[1]
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• Action 1: drag-and-drop.


• Recorded action: 


   CP( input[1], /html/body/main/div[3]/section/div/div/div[1] )

Selector: locates an element on the webpageLocates data from input

Demonstration (Action Trace) in WebRobot
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• Action 1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])


• Action 2: Click(/html/body/main/div[3]/section/…/button[2])

Demonstration (Action Trace) in WebRobot
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• Action 2: Click(/html/body/main/div[3]/section/…/button[2])

• Action 3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Demonstration (Action Trace) in WebRobot
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• Action 3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

• Action 4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Demonstration (Action Trace) in WebRobot
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• Action 4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

• Action 5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

Demonstration (Action Trace) in WebRobot
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• Action 5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

• Action 6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

Demonstration (Action Trace) in WebRobot
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Demonstration (Action Trace) in WebRobot
• Action 6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

• Action 7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])
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Demonstration (Action Trace) in WebRobot
• Action 7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

• Action 8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)
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Start To See Repetitions?

So does WebRobot!
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WebRobot Detects Repeating Patterns 

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• Find the pattern in the trace?
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WebRobot Detects Repeating Patterns 

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• Find the pattern in the trace?
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How Do We Automate Data Scraping?
• Now we’ve identified the pattern…

• But how can we automate this task?


• Write program!

• … based on the identified pattern
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What Should The Program Look Like?
1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

What is one program that can 
automate this task?
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What Should The Program Look Like?

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• Different (actually, many) ways to write the program…

• What “properties” should these programs have?


• In terms of what they do, rather than how they look
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Property 1: Reproduce Trace

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• When executed, program should reproduce actions in trace

• First action executed by program is first action in trace 

• Same for second, third, …, last actions 
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Property 2: Generalize Trace

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

• When executed, program should generalize the trace

• Reproduce trace + produce at least one more action

9: some action not seen before
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Let’s Look At Some Programs..
• For each program, ask two questions:  


• Does it reproduce trace? 

• Does it generalize trace? 

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)
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Program 1
• Trace itself

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[2]/phone)


Trace

Reproduce? 

Generalize?

Pros? Cons?
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Program 2
• Trace + one more action in the end

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[2]/phone)


Scrape(/html/body/main/div[3]/section/…/div[3]/addr)

Trace

Reproduce? 

Generalize?

Pros? Cons?
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Program 3
• Using a loop

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

Reproduce? 

Generalize?

• What does it do? 

• Does it reproduce/generalize trace? And why? 

Pros? Cons?
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Program 3
• Using a loop

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

Reproduce? 

Generalize?

• What does it do? 

• Does it reproduce/generalize trace? And why? 

• Can you write a different loopy program?

Pros? Cons?
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Program 3
• Another loopy program..

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

For i = 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)

• But which one is “better”?
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Let’s Look At These Programs: Pros & Cons

Trace itself

Trace + One Action

Loop

Pros Cons

Does not generalize

Can generalize Generalization may 
be wrong

More reasonable 
generalization 

Can reproduce 

Easy to synthesize 

Potentially harder 
to synthesize
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Let’s Look At These Programs: Pros & Cons

WebRobot synthesizes loopy programs!

Trace itself

Trace + One Action

Loop

Pros Cons

Does not generalize

Can generalize Generalization may 
be wrong

More reasonable 
generalization 

Can reproduce 

Easy to synthesize 

Potentially harder 
to synthesize
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How To Synthesize Loopy Programs?
• Trace -> Program: find a program that generalizes the given trace 

1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Specification: Trace Program with loops

Exam 2 does NOT cover 
the rest of lecture!
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Take A Step Back..
• Previously, programming-by-example


• Specification: input-output pairs 

• Program: defined by context-free grammar

• Synthesis approach: top-down search

e → x
| 1
| e + e

(2,4)

e x

1

e + e

x + e

x + x

x + 1

x + e + e1 + e

e + e + e
…

…

…
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Take A Step Back..
• Previously, programming-by-example


• Specification: input-output pairs 

• Program: defined by context-free grammar

• Synthesis approach: top-down search

• Now, programming-by-demonstration  

• Specification: 

• Program: 

• Synthesis approach:  
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Take A Step Back..
• Previously, programming-by-example


• Specification: input-output pairs 

• Program: defined by context-free grammar

• Synthesis approach: top-down search

• Now, programming-by-demonstration  

• Specification: a sequence of actions 

• Program: still context-free grammar (but a different one)

• Synthesis approach:  
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WebRobot Grammar
Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This entire 
thing is a 

“program”
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
Another “statement”



49

WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
Another “statement”
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

Also a “statement”!
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

Also a “statement”!
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WebRobot Grammar
CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

Click(/html/body/main/div[3]/section/…/button[2])

For i = 1, 2, … do: 


Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[I]/phone)

Program    P ::= S; …; S

Statement  S ::= Click(DOM-selector) 

               | Scrape(DOM-selector) 

               | CP(input-selector, DOM-selector)

               | Enter(string, DOM-selector) 

               | foreach var in children(DOM-selector) do { P } 

               | while(true) do { P; Click(DOM-selector) } 

DOM-selector ::= a_normal_DOM_selector 

               | var/a_normal_DOM_selector

This is a “statement”
Another “statement”

Also a “statement”!

This is a “program”!
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Take A Step Back..
• Previously, programming-by-example


• Specification: input-output pairs 

• Program: defined by context-free grammar

• Synthesis approach: top-down search

• Now, programming-by-demonstration  

• Specification: a sequence of actions 

• Program: still context-free grammar (but a different one)

• Synthesis approach:  
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Any Ideas?
• What’s fundamental in program synthesis? 

• What’s difference between PBE vs. PBD? 

• Anything we can borrow from PBE to solve PBD?
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Synthesis = Search + Check

Search in  
grammar

Check against 
specification

Candidate program

Correct or not?

Program 
Synthesis =
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Synthesis = Search + Check

Search in  
grammar

Check against 
specification

Candidate program

Correct or not?

Program 
Synthesis =

PBE = Top-down 
search

Check against 
examples
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Synthesis = Search + Check

Search in  
grammar

Check against 
specification

Candidate program

Correct or not?

Program 
Synthesis =

PBE = Top-down 
search

Check against 
examples

PBD = ?? ??
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WebRobot = Rewrite + Trace Semantics

Rewrite-based 
search

Check against 
trace

Candidate program

Correct or not?

WebRobot =
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WebRobot = Rewrite + Trace Semantics

Rewrite-based 
search

Check against 
trace

Candidate program

Correct or not?

WebRobot =

• Still use an interpreter to run the program.. 

• But not a normal interpreter!

• A new interpreter based on “trace semantics”


• Idea: it runs program but logs actions program executes 
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WebRobot = Rewrite + Trace Semantics

Rewrite-based 
search

Check against 
trace

Candidate program

Correct or not?

WebRobot =

• Use both grammar and trace!

• Idea: identify some repeating pattern from trace, replace a 

sequence of repetitive actions by a loop
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WebRobot = Rewrite + Trace Semantics
1: CP(input[1], /html/body/main/div[3]/section/div/div/div[1])

2: Click(/html/body/main/div[3]/section/…/button[2])

3: Scrape(/html/body/main/div[3]/section/…/div[1]/addr)

4: Scrape(/html/body/main/div[3]/section/…/div[1]/…/div[3])

5: Scrape(/html/body/main/div[3]/section/…/div[1]/phone)

6: Scrape(/html/body/main/div[3]/section/…/div[2]/addr)

7: Scrape(/html/body/main/div[3]/section/…/div[2]/…/div[3])

8: Scrape(/html/body/main/div[3]/section/…/div[2]/phone)

For i = 1, 2, … do: 

Scrape(/html/body/main/div[3]/section/…/div[i]/addr)

Scrape(/html/body/main/div[3]/section/…/div[i]/…/div[3])

Scrape(/html/body/main/div[3]/section/…/div[i]/phone)
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WebRobot = Rewrite + Trace Semantics

Rewrite-based 
search

Check against 
trace

Candidate program

Correct or not?

WebRobot =

• Use both grammar and trace!

• Idea: identify some repeating pattern from trace, replace a 

sequence of repetitive actions by a loop

• Challenge: many different pattens, many different ways to 

replace —> need to track a large number of rewrites
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WebRobot Recap
• Automatically generate web automation scripts from user 

interactions with web browser

• Tasks: data scraping, data entry, form filling, etc.
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Switch Gears…

WebRobot

(PLDI 2022)

SemanticOn

(UIST 2022)
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Can WebRobot Automate This Task?
• Go to “The Best Street Photographers of All Time” 

• Scrape all images with at least two people interacting with 

each other
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Scrape Images with People Interacting 
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Can WebRobot Automate This Task?
• Go to “The Best Street Photographers of All Time” 

• Scrape all images with at least two people interacting with 

each other
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What’s “New” In This Task?
• Scrape images (rather than text)

• “At least two people interacting with each other” — a new 

form of condition!

• How to write program with this new logic?
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UIST 2022 Best Paper Honorable Mention Award

SemanticOn (UIST 2022)
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SemanticOn Demo

https://www.youtube.com/watch?v=OmJVaji-GJI
https://www.youtube.com/watch?v=eM3un7IpORQ 
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Key Idea: “Neurosymbolic”
• Synthesized programs use both symbolic and neural 

components 

• Use loop to iterate over all images 

• Use neural net to check if to scrape an image 
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That’s All
• April 17 — In Person Guest Lecture by Derek Gaston (Department 

of Energy) 


• April 22 — Guest Lecture by Natalia Sanchez (Darktrace, UM alum) 


• April 25 — Exam 2 


• April 26 — All Course Materials Due  


