
Productivity

03/25/2024 EECS 481 (W24) – Productivity 1

EECS 481 (W24)

03/25/2024 EECS 481 (W24) – Productivity 2

• We want to deliver and support a quality software
product

• Software processes are carried out by humans
• Humans have biases

• Some humans are more productive than others at
software engineering activities

• How can we understand and improve such human
expertise?

The Story so far…

03/25/2024 EECS 481 (W24) – Productivity 3

● Humans demonstrate different levels of expertise (i.e.,
different productivity rates) at programming tasks.

● We consider a number of hypotheses, including
hardware support, slow programmers and programs,
abstractions, decompositions, and neural activity. For
each, we examine relevant scientific literature.

● Organizations can provide hardware support. Individuals
can practice abstractions and decompositions.

One-Slide Summary

03/25/2024 EECS 481 (W24) – Productivity 4

• Real-Time Exercise
• Reading Discussion

• Rapid Response Time
• Programming Performance
• Mythical Man-Month
• Expertise in Problem Solving
• Expert Bodies, Expert Minds

• Advice

Outline, Psychology

03/25/2024 EECS 481 (W24) – Productivity 5

1. (knowledge) explain how hardware affects
productivity

2. (knowledge) explain how experts and novices
approach problem-solving

3. (knowledge) explain why adding more people to
the project does not always work

Learning Objectives: by the end of today’s lecture, you
should be able to…

03/25/2024 EECS 481 (W24) – Productivity 6

Productivity in Software Engineering is a measure of how
efficiently and effectively software developers can
produce high-quality software products. Productivity can
be influenced by various factors, such as:
• The characteristics of the software product, such as its

size, complexity, requirements, and quality standards.
• The characteristics of the software process, such as its

methodology, tools, techniques, and practices.
• The characteristics of the software development

environment, such as its hardware, software, network,
and infrastructure.

Productivity in Software Engineering

03/25/2024 EECS 481 (W24) – Productivity 7

• The characteristics of the corporate culture, such as its
vision, mission, values, and policies.

• The characteristics of the team culture, such as
communication, collaboration, coordination, and cohesion.

• The characteristics of the individual developers, such as their
skills, experiences, motivations, and preferences.

• The characteristics of the work environment, such as its
physical, social, and psychological aspects.

• The characteristics of the individual project, such as its
scope, duration, budget, and stakeholders.

Productivity in Software Engineering (Cont’d)

03/25/2024 EECS 481 (W24) – Productivity 8

Different factors may have different impacts on productivity
depending on the context and the situation.
• Some factors may have positive effects, such as completing

tasks, working with few interruptions, and being happy and
satisfied.

• Some factors may have negative effects, such as
encountering errors, having meetings, and facing violence
and oppression.

• Some factors may have mixed or uncertain effects, such as
using existing or new technologies, working remotely or in-
person, and having diverse or homogeneous teams.

Productivity in Software Engineering (Cont’d)

03/25/2024 EECS 481 (W24) – Productivity 9

To improve productivity in software engineering, it is important
to understand the factors that affect it and to apply appropriate
methods and measures to optimize them. Some of the
methods and measures that can help to improve productivity
are:
• Using standards-based and interoperable technologies that
can ensure compatibility and scalability of the software
products and systems.
• Implementing network security and resilience measures that
can protect the software products and systems from
unauthorized access, tampering, or disruption.

Improving Productivity in Software Engineering

03/25/2024 EECS 481 (W24) – Productivity 10

• Using human-centered methods that can measure productivity
from the perspective of the developers and the users, and that can
involve them in the design and evaluation of the software products
and systems.
• Using biometric sensors that can monitor the physiological and

psychological states of the developers and provide feedback and
support for their well-being and performance.

• Using team awareness tools can enhance the communication and
coordination of the developers and provide visibility and
transparency of their work and progress.

https://web.eecs.umich.edu/~movaghar/The_Effect_of_Work_Environments_on_Productivity_and_Satisfaction_of_Software_Engineers%20IEEE-TSE%202021.pdf

https://web.eecs.umich.edu/~movaghar/Software%20Productivity%202019.pdf

https://web.eecs.umich.edu/~movaghar/What_Predicts_Software_Developers_Productivity.pdf

Improving Productivity in Software Engineering (Cont’d)

https://web.eecs.umich.edu/~movaghar/The_Effect_of_Work_Environments_on_Productivity_and_Satisfaction_of_Software_Engineers%20IEEE-TSE%202021.pdf
https://web.eecs.umich.edu/~movaghar/Software%20Productivity%202019.pdf
https://web.eecs.umich.edu/~movaghar/What_Predicts_Software_Developers_Productivity.pdf

11

Real-Time Exercise

03/25/2024 EECS 481 (W24) – Productivity

03/25/2024 EECS 481 (W24) – Productivity 12

https://dijkstra.eecs.umich.edu/eecs483/shibboleth/productivity/
You will be asked to solve a simple problem.

• Get the correct answer as quickly as possible.
• This counts as the Participation if you submit an answer and

explanation by midnight.
• You will be timed (once you click “start”).
• You can use any program, language or tool available to you.
• Once you have submitted your answer, you must briefly

explain what you did.
• I will cut things off after ~10 minutes.

Real-Time Exercise

https://dijkstra.eecs.umich.edu/eecs483/shibboleth/productivity/

03/25/2024 EECS 481 (W24) – Productivity 13

● How many different tasks were students given?
● What did you observe, roughly,

as the range and variance of times?

Distribution Times

03/25/2024 EECS 481 (W24) – Productivity 14

● My computer is slow.
● I'm slow and so is my program.
● I picked the wrong language/abstraction and

couldn't break up the problem.
● I did not recognize the true components of the

problem.
● My brain is currently inefficient, requiring much

metabolism for little neural activation.

Hypothesis

15

Rapid Response
Time

03/25/2024 EECS 481 (W24) – Productivity

03/25/2024 EECS 481 (W24) – Productivity 16

• In customer service, Rapid Response Time is the
average time it takes for a business to answer customer
queries or complaints.

• Customers expect fast and helpful solutions, and
businesses that provide them can earn customer loyalty
and satisfaction.

• Some ways to improve customer service response time
are setting goals, collecting feedback, providing self-
service resources, and using automation tools.

Rapid Response Time in Customer Service

03/25/2024 EECS 481 (W24) – Productivity 17

• The concept of Rapid Response Time in software engineering
was first introduced by IBM in the 1980s as part of the Rapid
Application Development (RAD) model. This model emphasized
the importance of quick development cycles and the ability to
rapidly respond to user requirements.

• The RAD model was further developed and formalized by James
Martin when he published a book on the subject in 1991.

• The concept of Rapid Response Time is integral to various
software development methodologies that prioritize speed and
flexibility in response to changing requirements.

Rapid Response Time

03/25/2024 EECS 481 (W24) – Productivity 18

Rapid Response Time in software engineering is a
measure of how quickly a software system or application
can respond to user requests or inputs. It is an important
aspect of software quality, usability, and performance.
Rapid Response Time can also refer to a development
methodology that aims to deliver software products faster
and with fewer defects by using iterative and incremental
processes, such as Rapid Application Development
(RAD).

Rapid Response Time in Software Engineering

03/25/2024 EECS 481 (W24) – Productivity 19

Some factors that affect Rapid Response Time in software
engineering are:
• The complexity and size of the software system or application
• The design and architecture of the software system or application
• The programming language and tools used to develop the

software system or application
• The hardware and network resources available to run the software

system or application
• The user expectations and requirements for the software system

or application

Rapid Response Time in SE (Cont’d)

03/25/2024 EECS 481 (W24) – Productivity 20

• Using agile and lean principles and practices to deliver
software products in small and frequent increments

• Applying design patterns and best practices to reduce
coupling and increase cohesion among software
components

• Using code analysis and testing tools to identify and fix
performance bottlenecks and bugs

• Optimizing the code and algorithms to reduce the
computational and memory costs

• Scaling the software system or application horizontally or
vertically to handle increased workload and demand

Ways to improve Rapid Response Time in SE

03/25/2024 EECS 481 (W24) – Productivity 21

• In customer service, a web application that provides
dynamic and personalized content to users should
respond within 1 second to keep the user's flow of
thought uninterrupted

https://stackoverflow.com/questions/164175/what-is-considered-a-good-response-time-for-a-dynamic-personalized-web-applicat

• In the military, a software system that coordinates
rapid reaction forces should respond within 0.1
seconds to make the user feel that the system is
reacting instantaneously

Examples of Rapid Response Time in SE

https://stackoverflow.com/questions/164175/what-is-considered-a-good-response-time-for-a-dynamic-personalized-web-applicat

03/25/2024 EECS 481 (W24) – Productivity 22

• In food safety, a software application that tracks and
controls foodborne outbreaks should respond within 10
seconds to keep the user's attention focused on the
dialogue.

• In workforce development, a software program that
helps workers transition to new jobs should respond
within a short time frame (usually 60-90 days) to provide
reemployment services to the affected workers

https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-rad/

Examples of Rapid Response Time in SE (Cont’d)

https://www.geeksforgeeks.org/software-engineering-rapid-application-development-model-rad/

03/25/2024 EECS 481 (W24) – Productivity 23

• Walter Dougherty and Ahrvind
Thadani. The Economic Value of Rapid
Response Time. IBM Systems Journal,
1982.
• Read chart “backward”,

from Right to Left.
• Productivity goes up,

then sharply up.
Relationship Between System Response
Time and the Number of Transactions a
User Can Complete in an Hour
https://jlelliotton.blogspot.com/p/the-economic-value-of-rapid-response.html

Rapid Response Time

System Response Time

N
um

be
r o

f U
se

r
Tr

an
sa

ct
io

ns
 P

er
 T

im
e

U
ni

t

https://jlelliotton.blogspot.com/p/the-economic-value-of-rapid-response.html

03/25/2024 EECS 481 (W24) – Productivity 24

• "...each second of system response degradation leads
to a similar degradation added to the user's time for the
following [command]. This phenomenon seems to be
related to an individual's attention span. The traditional
model of a person thinking after each system response
appears to be inaccurate. Instead, people seem to have
a sequence of actions in mind, contained in a short-term
mental memory buffer. Increases in SRT [system
response time] seem to disrupt the thought processes,
and this may result in having to rethink the sequence of
actions to be continued.”

Rapid Response Time

03/25/2024 EECS 481 (W24) – Productivity 25

Rapid Response Time

N
um

be
r o

f U
se

r
Tr

an
sa

ct
io

ns
 P

er
 T

im
e

U
ni

t
System Response Time

Expert

Average
Novice

Figure 7

High Function Graphics, Transaction
Rate versus System Response Time

03/25/2024 EECS 481 (W24) – Productivity 26

• The System Products Division (SPD) study measured 75
work sessions of 15 engineers at graphic display
terminals as they performed various physical design
tasks. Their transaction rate data confirmed Thadhani’s
curve, (Figure 7). Indeed, it showed considerably more.
All users benefited from sub-second response time. In
addition, on average, an experienced engineer working
with a sub-second response was as productive as an
expert with a slower response. A novice's performance
became as good as the experienced professional and
the productivity of the expert was dramatically
enhanced.

Rapid Response Time

03/25/2024 EECS 481 (W24) – Productivity 27

Increased Monthly Costs with Response Time
Deterioration at the National Institutes of Health
Computer Utility

03/25/2024 EECS 481 (W24) – Productivity 28

• Example implication, from the reading:
• “The system and user cost for this time were estimated

at $900,000 monthly (Figure 6), 15 times the incremental
cost of a new processor capable of providing sub-second
response time to 500 simultaneous users. For the
National Institutes of Health, the cost of upgrading their
processor was more than justified by the savings in user
time and the restoration of their low task costs.

• The engineers use display terminals specifically designed
for the high transaction rates necessary to manipulate
graphic images.”

Rapid Response Time

29

Programming
Performance

03/25/2024 EECS 481 (W24) – Productivity

03/25/2024 EECS 481 (W24) – Productivity 30

Programmer performance in software
engineering is a measure of how well a
programmer can write, test, debug, and
maintain software code.
It is an important aspect of software quality,
productivity, and efficiency.

Programmer Performance in Software Engineering

03/25/2024 EECS 481 (W24) – Productivity 31

• Code quality: the degree to which the software code meets
the functional and non-functional requirements, follows the
coding standards and best practices, and is readable,
maintainable, and reusable.

• Code quality can be measured by tools such as code
analyzers, code reviewers, and code coverage tools, which
can detect and report code issues, such as bugs, errors,
vulnerabilities, complexity, duplication, and style violations

https://blog.pragmaticengineer.com/performance-reviews-for-software-engineers/

https://www.effy.ai/blog/developer-performance-review

Metrics for Programmer Performance

https://blog.pragmaticengineer.com/performance-reviews-for-software-engineers/
https://www.effy.ai/blog/developer-performance-review

03/25/2024 EECS 481 (W24) – Productivity 32

• Code productivity: the amount of software code that a
programmer can produce or modify in a given time
frame

• Code productivity can be measured by tools such as
code counters, code trackers, and code estimators,
which can calculate and report code metrics, such as
lines of code, function points, cyclomatic complexity, and
code churn

https://www.shakebugs.com/blog/kpi-software-development/

https://insights.sei.cmu.edu/blog/programmer-moneyball-challenging-the-myth-of-individual-programmer-productivity/

.

Metrics for Programmer Performance

https://www.shakebugs.com/blog/kpi-software-development/
https://insights.sei.cmu.edu/blog/programmer-moneyball-challenging-the-myth-of-individual-programmer-productivity/

03/25/2024 EECS 481 (W24) – Productivity 33

• Code efficiency: the degree to which the software code
can perform its intended functions and tasks with
optimal use of resources, such as CPU, memory, disk,
network, and power

• Code efficiency can be measured by tools such as code
profilers, code optimizers, and code benchmarkers,
which can analyze and report code performance, such
as execution time, memory usage, disk space,
bandwidth, and power consumption

https://youteam.io/blog/software-engineer-performance-review-the-best-process-and-metrics/

Metrics for Programmer Performance

https://youteam.io/blog/software-engineer-performance-review-the-best-process-and-metrics/

03/25/2024 EECS 481 (W24) – Productivity 34

• Performance feedback: the process of providing and
receiving constructive and timely feedback on the
software code and the programming skills.

• Performance feedback can be done by using tools
such as code review platforms, code collaboration
tools, and code feedback systems, which can
facilitate and automate code reviews, code
comments, code suggestions, and code ratings

How to Improve Programmer Performance?

03/25/2024 EECS 481 (W24) – Productivity 35

• Performance coaching: the process of mentoring
and guiding a programmer to improve their software
code and their programming skills.

• Performance coaching can be done by using tools
such as code learning platforms, code mentoring
tools, and code coaching systems, which can offer
and deliver code courses, code challenges, code
exercises, code quizzes, and code tips

How to Improve Programmer Performance?

03/25/2024 EECS 481 (W24) – Productivity 36

• Performance recognition: the process of
acknowledging and rewarding a programmer for
their software code and their programming skills

• Performance recognition can be done by using
tools such as code recognition platforms, code
reward tools, and code gamification systems, which
can create and manage code badges, code points,
code levels, code leaderboards, and code rewards

How to Improve Programmer Performance?

03/25/2024 EECS 481 (W24) – Productivity 37

● H. Sackman, W. J. Erikson and E. E. Grant. Exploratory Experimental Studies
Comparing Online and Offline Programming Performance. Communication
of the ACM, 1968.

● Two exploratory experiments were conducted at System Development
Corporation to compare the debugging performance of programmers
working under conditions of online and offline access to a computer. These
were the first known studies that measured programmers' performance
under controlled conditions for standard tasks.

https://web.eecs.umich.edu/~movaghar/Sackman 1968.pdf

● Summary?

Programming Performance

https://web.eecs.umich.edu/~movaghar/Sackman%201968.pdf

03/25/2024 EECS 481 (W24) – Productivity 38

Programming Performance

03/25/2024 EECS 481 (W24) – Productivity 39

Programming Performance

03/25/2024 EECS 481 (W24) – Productivity 40

• A substantial performance factor designated as
“programming speed,” associated with faster coding
and debugging, less CPU time, and the use of a higher
order language.

• WRW: This is new, but not the whole story.
• A well-defined “program economy” factor marked by

shorter and faster running programs, associated to
some extent with greater programming experience and
with the use of machine language rather than higher
order language.

• WRW: Similar explanation to the previous paper.

Programming Performance

03/25/2024 EECS 481 (W24) – Productivity 41

• “Data were gathered on the subject's grades in the
SDC programmer training class … and they were
also given the Basic Programmer Knowledge Test.
Correlations between all experimental measures,
adjusted scores, grades, and the BPKT results were
determined. … The results showed no consistent
correlation between performance measures and the
various grades and test scores.”

Programming Performance

03/25/2024 EECS 481 (W24) – Productivity 42

• “It is apparent from the spread of the data that very
substantial savings can be effected by successfully
detecting low performers. Techniques measuring
individual programming skills should be vigorously
pursued ...”

• Why do CS companies use Skill-Based Interviews
instead of just using your class grades?

• See other lecture!

Programming Performance

03/25/2024 EECS 481 (W24) – Productivity 43

• Zachary P. Fry, Westley Weimer: A Human Study of Fault Localization Accuracy. International
Conference on Software Maintenance (ICSM) 2010

https://web.eecs.umich.edu/~movaghar/A_human_study_of_fault_localization_accuracy.pdf

Fault Localization Accuracy

https://web.eecs.umich.edu/~movaghar/A_human_study_of_fault_localization_accuracy.pdf

44

The Mythical “Man” Month

03/25/2024 EECS 481 (W24) – Productivity

03/11/24 EECS 481 (W24) – Requirements & Specifications 45

• Frederick Phillips Brooks Jr. (April 19, 1931 – November 17, 2022)
was an American computer architect, software engineer,
and computer scientist, best known for managing the development
of IBM's System/360 family of computers and the OS/360 software
support package, then later writing candidly about those experiences
in his seminal book The Mythical Man-Month.

• In 1976, Brooks was elected to the National Academy of
Engineering for "contributions to computer system design and the
development of academic programs in computer sciences".

• Brooks received many awards, including the National Medal of
Technology in 1985 and the Turing Award in 1999.

Fred Brooks

https://en.wikipedia.org/wiki/OS/360

03/25/2024 EECS 481 (W24) – Productivity 46

• The Mythical Man-Month: Essays on Software Engineering is
a book on software engineering and project management by
Fred Brooks first published in 1975, with subsequent editions
in 1982 and 1995.

• Its central theme is that adding manpower to a software
project that is behind schedule delays it even longer.

• This idea is known as Brooks’s law and is presented along
with the second-system effect and advocacy of prototyping.

• Brooks's observations are based on his experiences at
IBM while managing the development of OS/360.

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

The Mythical Man-Month: Essays on Software Engineering

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

03/25/2024 EECS 481 (W24) – Productivity 47

• Frederick Brooks. The Mythical Man-Month.
Addison-Wesley, 1975/1995.

• Summary?

The Mythical Man-Month

03/25/2024 EECS 481 (W24) – Productivity 48

• Brooks: SE is non-partitionable.
The Mythical Man-Month

03/25/2024 EECS 481 (W24) – Productivity 49

The Mythical Man-Month

03/25/2024 EECS 481 (W24) – Productivity 50

The Mythical Man-Month

03/25/2024 EECS 481 (W24) – Productivity 51

• 1200 lines / year = 3 lines of code per day
• What?

• Recall: “debugged code”
• This includes coding, testing, debugging, etc.
• Basically the entire software lifecycle

• More modern estimates: 10 LOC / day
• The real insight is the observation of language

invariance.
• You can get 10 lines of ASM or 10 lines of Python.

The Mythical Man-Month

52

Trivia Break

03/25/2024 EECS 481 (W24) – Productivity

03/25/2024 EECS 481 (W24) – Productivity 53

• Originally called Catholepistemiad, this institution
was established in 1817. Its board of regents was
formed later in 1837. However, a local justice called
that name “neither Greek, Latin, nor English, [but
merely] a piece of language gone mad.” At a speech
there in 1960, President Kennedy announced his
intention to establish the Peace Corps.

Trivia: Names

03/25/2024 EECS 481 (W24) – Productivity 54

• Name the reclusive American poet and Amherst
graduate associated with these works:

• Because I could not stop for Death
He kindly stopped for me

• I'm nobody! Who are you?
Are you nobody, too?

• Tell all the Truth but tell it slant —
Success in Circuit lies

• My Life had stood — a Loaded Gun —
In Corners — till a Day

Trivia: Poetry

03/25/2024 EECS 481 (W24) – Productivity 55

• This term refers to the rate at which video game
players can select units or otherwise issue orders. It
is primarily associated with real-time strategy and
fighting games such as StarCraft; a high value for
this metric is associated with skill and expertise:

• Beginner: ~50
• Professional: ~300
• Competition: ~400+

Trivia: Gaming Metrics

03/25/2024 EECS 481 (W24) – Productivity 56

• This fresh cheese is common in
South Asia, especially in India. It
is a non-melting, acid-set farmer
cheese made by curdling
heated milk with lemon juice or
vinegar or yogurt, separating
out the excess water, and
cooling. It is commonly used in
dishes in India, Nepal,
Bangladesh and Pakistan.

Trivia: Cuisine

5703/25/2024 EECS 481 (W24) – Productivity

Expertise in
Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 58

• Expertise in problem-solving is the ability to solve
complex and novel problems efficiently and
effectively

• Expertise in problem-solving is not a fixed or innate
trait, but a dynamic and learnable one.

• It can be developed and improved by engaging in
deliberate practice, receiving feedback, and
reflecting on one's own problem-solving process

Expertise in Problem-Solving

03/25/2024 EECS 481 (W24) – Productivity 59

• It enhances the performance and productivity of
individuals and organizations by enabling them to
achieve their goals and overcome challenges

• It improves the quality and creativity of solutions by
allowing them to generate more ideas, evaluate more
alternatives, and apply more principles

• It increases the confidence and satisfaction of problem
solvers by making them feel more competent,
autonomous, and motivated

Effects of Expertise in Problem-Solving

03/25/2024 EECS 481 (W24) – Productivity 60

It facilitates the learning and development of problem
solvers by helping them acquire new knowledge,
skills, and strategies
It fosters the collaboration and communication of
problem solvers by enabling them to share their
perspectives, insights, and feedback

Effects of Expertise in Problem-Solving

03/25/2024 EECS 481 (W24) – Productivity 61

• MTH Chi, PJ Feltovich, R Glaser, Categorization and
representation of physics problems by experts and
novices, Cognitive science 5 (2), 121-152

https://web.eecs.umich.edu/~movaghar/Cognitive%20Science%20-%20April%201981%20-%20Chi%20-
%20Categorization%20and%20Representation%20of%20Physics%20Problems%20by%20Experts%20and%20Novices.pdf

• Summary?

Expertise in Problem Solving

https://web.eecs.umich.edu/~movaghar/Cognitive%20Science%20-%20April%201981%20-%20Chi%20-%20Categorization%20and%20Representation%20of%20Physics%20Problems%20by%20Experts%20and%20Novices.pdf
https://web.eecs.umich.edu/~movaghar/Cognitive%20Science%20-%20April%201981%20-%20Chi%20-%20Categorization%20and%20Representation%20of%20Physics%20Problems%20by%20Experts%20and%20Novices.pdf

03/25/2024 EECS 481 (W24) – Productivity 62

• “Both expert and novice proceed to solution by
evoking the appropriate physics equations and then
solving them. The expert often does this in one step,
however …”

• “The speed with which a problem can be solved
depends a great deal on the skill of the individual.
Simon and Simon noted a 4:1 difference … Larkin
also reported a similar difference between her
experts and novices.”

Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 63

• “Another interesting aspect of novice problem
solving is not only that they commit more errors
than experts but that, even when they do solve a
physics problem correctly, their approach is quite
different.”

Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 64

• These two problems
have a similar superficial
structure

Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 65

Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 66

• “In this study, we specially designed a set of 20
problems to test the hypothesis that novices are
more dependent on surface features, whereas
experts focus more on the underlying principles. …
We were able to replicate the initial findings that
experts categorize problems by physical laws,
whereas novices categorize problems by the literal
components.”

Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 67

• “If we assume that such categories reflect
knowledge schemata, then our results from the
person at the intermediate skill level suggest that,
with learning, there is a gradual shift in organization
of knowledge --- from one centering on the physical
components, to one where there is a combined
reliance on the physical components and the
physics laws, and finally, to one primarily unrelated
to the physical components.”

Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 68

• “Improved ability to learn would be developed through a
knowledge strategy in which individuals would be taught ways in
which their available knowledge can be recognized and
manipulated.”
• Do we do this in school?

Expertise in Problem Solving

69

Expert Bodies,
Expert Minds

03/25/2024 EECS 481 (W24) – Productivity

Spud Webb (5’7”) 1986 NBA Slam Dunk Contest

03/25/2024 EECS 481 (W24) – Productivity 70

• U. Debarnot, M. Sperduti, F. Di
Rienzo, and A Guillot. Experts bodies,
experts minds: How physical and
mental training shape the brain.
Frontiers in Human Neuroscience,
2014.

https://web.eecs.umich.edu/~movaghar/fnhum-08-00280.pdf

• Summary?

Expert Bodies, Expert Minds

https://web.eecs.umich.edu/~movaghar/fnhum-08-00280.pdf

03/25/2024 EECS 481 (W24) – Productivity 71

• “These results suggest that the disparity between
the quality of the performance of novice and expert
golfers lies at the level of the functional
organization of neural networks during motor
planning. More generally, Patel et al. (2013)
demonstrated that spatially distributed cortical
networks and subcortical striatal regions may serve
as neural markers of practice interventions.”

• What's a “practice intervention”?

Expert Bodies, Expert Minds

03/25/2024 EECS 481 (W24) – Productivity 72

• “Recently, Picard et al. (2013) examined the
consequence of practice-dependent motor learning on
the metabolic and neural activity in M1 of monkeys who
had extensive training (~1–6 years) on sequential
movement tasks. They found that practicing a skilled
movement and the development of expertise lead to
lower M1 metabolic activity, without a concomitant
reduction in neuron activity. In other terms,
they showed that less synaptic activity
was required to generate a given amount
of neuronal activity.”

• What does this mean?

Expert Bodies, Expert Minds

03/25/2024 EECS 481 (W24) – Productivity 73

• Scholz et al. (2009) reported
experience-induced changes in
white matter architecture
following a short period of
practice. Practically, it was
found that 6 weeks of juggling
practice protracted an
increased fractional anisotropy
in a region of white matter
underlying the intraparietal
sulcus.

Expert Bodies, Expert Minds

03/25/2024 EECS 481 (W24) – Productivity 74

• If the brain anatomy parts are a bit
opaque, it may be easier to interpret a
famous study of London taxi cab driver brains
[http://www.scientificamerican.com/article/london-taxi-memory/].
Memorizing and navigating that spatial problem
(London is not laid out on a clean grid) causes growth
in the hippocampus. Quote:

• “These navigational demands stimulate brain development,
concludes a study five years in the making. With the new
research, scientists can definitively say that London taxi
drivers not only have larger-than-average memory centers in
their brains, but also that their intensive training is responsible
for the growth.”

Taxi Cab Drivers

http://www.scientificamerican.com/article/london-taxi-memory/

03/25/2024 EECS 481 (W24) – Productivity 75

• What are other ways to solve this?
• Hint: Many did not “write a program” at all in the

conventional sense.
• If this were a contest (and it is not!), the key

decision/mistake happened in the first seconds
when you decided to write a program.

• “C vs. Python” is a red herring: to phrase things as
pejoratively as possible, that determines the winner of the
loser's bracket.

Back To The Time I Exercised

03/25/2024 EECS 481 (W24) – Productivity 76

• E. Murphy-Hill, C. Jaspan, C. Sadowski, D. C.
Shepherd, M. Phillips, C. Winter, A. K. Dolan, E. K.
Smith, M. A. Jorde. What Predicts Software
Developers’ Productivity? Transactions on Software
Engineering, 2019.

• “ … a survey that asked 622 developers across 3
companies [Google, ABB, National Instruments]
about these productivity factors and self-rated
productivity”
https://web.eecs.umich.edu/~movaghar/What_Predicts_Software_Developers_Productivity%20IEEE-TSE%202019.pdf

What Predicts Software Developers’ Productivity

https://web.eecs.umich.edu/~movaghar/What_Predicts_Software_Developers_Productivity%20IEEE-TSE%202019.pdf

03/25/2024 EECS 481 (W24) – Productivity 77

• The previous article is a research paper that investigates the
factors that influence software developers' productivity. The
authors conducted a large-scale survey of over 622 developers
from 3 companies (Google, ABB, and National Instruments) and
analyzed their responses using statistical methods.

• The paper concludes that software developers' productivity is a
complex and multidimensional phenomenon that requires a
holistic and empirical approach to measure and improve.

• The paper also provides some implications and
recommendations for software engineering research and
practice

Research Paper

03/25/2024 EECS 481 (W24) – Productivity 78

• Software developers' productivity is not only related to
the amount of code they write, but also to the quality,
impact, and usefulness of their code

• Software developers' productivity is affected by various
personal, social, and environmental factors, such as
their motivation, satisfaction, collaboration, feedback,
tools, and processes

• Software developers' productivity is not a static or fixed
attribute, but a dynamic and context-dependent one,
that can vary across different tasks, projects, and
domains

Research Conclusions

03/25/2024 EECS 481 (W24) – Productivity 79

• COCOMO factors are the parameters that affect the
cost, effort, and schedule of software development
projects, according to the COCOMO (Constructive
Cost Model) developed by Barry W. Boehm

• There are two types of COCOMO factors: scaling
drivers and effort multipliers

https://en.wikipedia.org/wiki/COCOMO

COCOMO Factors

https://en.wikipedia.org/wiki/COCOMO

03/25/2024 EECS 481 (W24) – Productivity 80

• “I regularly reach a high level of productivity.”
• Correlate with some objective measures at Google

(n=3344)
• Senior devs self-report

less productivity

Self-Reported?

03/25/2024 EECS 481 (W24) – Productivity 81

• They also included COCOMO factors (what are those
again?) and found that they didn't matter

• Either COCOMO isn't accurate
• Or it's accurate at the project, not the person, level

The Results

03/25/2024 EECS 481 (W24) – Productivity 82

• My computer is slow.
• I'm slow and so is my program.
• I picked the wrong language/abstraction and

couldn't break up the problem.
• I did not recognize the true components of the

problem.
• My brain is currently inefficient, requiring much

metabolism for little neural activation.

Hypothesis

83

Everyone is entitled
to their opinion

03/25/2024 EECS 481 (W24) – Productivity

03/25/2024 EECS 481 (W24) – Productivity 84

• A substantial performance factor designated as
“programming speed,” associated with faster coding
and debugging, less CPU time, and the use of a
higher order language.

• Programming Speed = Common Mistaken Belief!
• Use of Abstraction = The Real Deal

• The language is just one way to get abstraction. Abstraction (so
that you can break up the problem and re-use existing solutions)
is the relevant insight.

My Opinion: Programming Performance

03/25/2024 EECS 481 (W24) – Productivity 85

• “Planning” includes deciding whether write a
standard program or whether to try something
different (“totally new techniques”)

• Coding is much less relevant than many think.

My Opinion: Mythical M-M

03/25/2024 EECS 481 (W24) – Productivity 86

• “The real insight is the observation of
language invariance.

• You can get 10 lines of ASM or 10 lines of Python.”
• All keystrokes in my solution to this problem

• [Ctrl]-A cat > foo [Enter] [Ctrl]-V [Ctrl]-D vim foo [Enter]
Vjjjjjjjjjd :%s/$/+/g [Enter] :0VGJA0 [Enter] V!bc -l [Enter]
A/10000 V!bc -l [Enter]

• You can solve this by typing less, not faster.
• Would typing 100% faster or slower have mattered?

My Opinion: Mythical M-M

03/25/2024 EECS 481 (W24) – Productivity 87

• The observation of language invariance in Fred Brooks' "The Mythical
Man-Month" refers to the idea that the productivity of software
engineers does not significantly vary with the programming language
used. This insight suggests that the time required to develop software is
relatively constant regardless of the language, because the complexity
and challenges of software engineering are primarily due to the inherent
difficulties of the tasks themselves, rather than the tools used to
accomplish them.

• Brooks argues that the main factors affecting software development
time are the conceptual and communicative work involved, rather than
the specific syntax or features of a programming language. This concept
is part of a broader discussion in the book about the fallacy of measuring
productivity in "man-months" and the complexities of software project
management.

The notion of language invariance

03/25/2024 EECS 481 (W24) – Productivity 88

Outdated Practices: Some argue that the book's insights, while
revolutionary at the time, are less applicable in today's agile and
fast-paced software development environment.
Overemphasis on Large Systems: Brooks' experiences were primarily
with large, complex systems at IBM. Critics say this may translate
poorly to smaller projects or different types of software
development.
Brooks' Law Misinterpretation: The idea that "adding manpower to a
late software project makes it later" can be misinterpreted as an
argument against scaling teams, whereas Brooks intended it as a
caution against poor planning and coordination.

Criticisms about The Mythical Man-Month

03/25/2024 EECS 481 (W24) – Productivity 89

Neglect of Modern Tools: The book predates many modern tools and
practices that can mitigate some of the issues Brooks described, such as
version control systems, continuous integration, and comprehensive
automated testing.
Underestimation of Human Factors: While Brooks acknowledges the
human element in software engineering, some feel he underestimates the
impact of team dynamics, motivation, and individual skill levels.
No Silver Bullet: Brooks famously argued that no single technology or
practice would produce a tenfold improvement in productivity within a
decade. Critics have pointed to the rise of high-level programming
languages, development frameworks, and methodologies that have
significantly boosted productivity.

Criticisms about The Mythical Man-Month (Cont’d)

03/25/2024 EECS 481 (W24) – Productivity 90

• “Another interesting aspect of novice problem
solving is not only that they commit more errors
than experts but that, even when they do solve a
physics problem correctly, their approach is quite
different.”

• Story time: “I've seen this one before.”
• Linux OOM Killer.

• “approach is quite different” cf. “new techniques”
• Is “calculate math” a primitive in your language?

My Opinion: Expertise in Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 91

• Many of you looked at the problem
and, despite the instructions, saw
that it looked similar to
programming tasks you'd been
given before.

• Those are “it looks like a pulley”
surface features (file access then
loop to compute total then divide).

• You wanted “it uses Newton's 2nd
Law” deep features (compute the
average).

My Opinion: Problem Solving

03/25/2024 EECS 481 (W24) – Productivity 92

• On Page 6 (= Page 17) the Chi reading talks about three quantifiable (!)
differences between experts and novices when solving problems.
• The first is raw solution time (which we already saw in the Sackman reading).
• The second is pauses in retrieving chunks of the correct equation. This is more interesting

(cf. "chunking"): "experts group their equations in chunks so that the eliciting of one equation
perhaps activates another related equation, and thus it can be retrieved faster". For
programming, replace "equation" with "program fragment".

• One difference that previous students noted after watching my "how I did it"
explanation was that I never really seemed to stop and think about what to do
next, whereas a student might write the code to read in lines, stop and think, write
the code to iterate over them and sum them, stop and think, write the print-and-
divide code, etc. If you've observed that in yourself, the psych research
summarized in the Chi reading suggests that one area for improvement is to get
better at chaining from one fragment to the next.

My Opinion: Expert Bodies, Expert Minds

03/25/2024 EECS 481 (W24) – Productivity 93

There are three main quantifiable differences between experts
and novices when solving problems:
• The first difference is that experts can recognize and

categorize problems more quickly and accurately than
novices, based on their prior knowledge and experience

• The second difference is that experts can represent and
organize problems more effectively and efficiently than
novices, using their superior memory and mental models

• The third difference is that experts can search and select
solutions more rapidly and reliably than novices, using their
refined strategies and heuristics

Difference between Experts and novices

03/25/2024 EECS 481 (W24) – Productivity 94

• My “plan” breakdown:
• This problem is regular expressions plus a calculator.

• Use regular expressions to turn the input into an arithmetic
expression (“into a program”)

• Feed that to a pre-existing calculator

• Students who said “I will pass this to Excel” also did
well.

• Why are you re-inventing the wheel? Your boss wanted
the right answer as fast as possible.

My Opinion

95

Story Time
(They’re Fables)

03/25/2024 EECS 481 (W24) – Productivity

03/25/2024 EECS 481 (W24) – Productivity 96

• Abstraction is the process of generalizing concrete details,
such as attributes, away from the study of objects and
systems to focus attention on details of greater importance

• Abstraction is a fundamental concept in computer science
and software engineering, especially within the object-
oriented programming paradigm

• Abstraction can be achieved by using various features and
techniques, such as abstract data types, subroutines,
modules, polymorphism, inheritance, design patterns,
architectural styles, and software components

Abstraction

03/25/2024 EECS 481 (W24) – Productivity 97

• It reduces code duplication and complexity by reusing
common functionality and hiding irrelevant details

• It improves code quality and maintainability by following
coding standards and best practices

• It enhances code performance and efficiency by
optimizing the use of resources, such as CPU, memory,
disk, network, and power.

• It facilitates code collaboration and communication by
using clear and consistent interfaces and protocols

Benefits of Abstraction

03/25/2024 EECS 481 (W24) – Productivity 98

• It enables code scalability and reliability by
supporting concurrency and fault-tolerance

• It fosters code creativity and innovation by
allowing the creation of new abstractions and
languages

Benefits of Abstraction

03/25/2024 EECS 481 (W24) – Productivity 99

• One of the classical elements of magical fantasy is the ability to
transform one object or creature into another. This spans cultures, from
the Greek myth of Circe turning sailors to beasts to the magical
transformation duel in Disney's The Sword in the Stone
(http://video.disney.com/watch/wizards-duel-4be36b86f6d55e5bc7f6b2d6). Indeed,
many fantasy games feature this notion under the "formal" name of
polymorph. One of my favorite roleplaying systems codifies this nicely:
http://www.d20srd.org/srd/spells/polymorph_AnyObject.htm. To the suitably prepared and
devious mind, a polymorph spell is much more deadly than the usual
combat fireball or lightning bolt. You will make a much bigger explosion
by polymorphing your foe's 40 pound suit of armor into 40 pounds of
nitroclygerin than you will with any standard fireball. Indeed, many such
systems must implicitly or explicitly disallow such "chemistry" lest it
break the balance and challenge of the game.

Story Time: Abstraction

http://video.disney.com/watch/wizards-duel-4be36b86f6d55e5bc7f6b2d6
http://www.d20srd.org/srd/spells/polymorph_AnyObject.htm

03/25/2024 EECS 481 (W24) – Productivity 100

• You could take a moment to actually read that spell description linked
above. In one sense, an innocuous line is actually the most interesting:

• Target: One creature, or one nonmagical object of up to 100 cu. ft./level
• The spell can transform a single object. One object, eh? What exactly is a

single object? It turns out that this is a difficult -- and effectively unsolved
-- question. If you haven't run into it in your philosophy courses, check out
http://en.wikipedia.org/wiki/Ship_of_Theseus. For example, in Norse Mythology there
is a magical ship that can be transformed into folded up cloth
(http://en.wikipedia.org/wiki/Sk%C3%AD%C3%B0bla%C3%B0nir). So it seems that "one
ship" is sometimes "one object". But could just the mast or the sail of the
ship also be one object?

Story Time: Abstraction

http://en.wikipedia.org/wiki/Ship_of_Theseus
http://en.wikipedia.org/wiki/Sk%C3%AD%C3%B0bla%C3%B0nir

03/25/2024 EECS 481 (W24) – Productivity 101

• Try to learn a shell-based editor, such as vim or emacs, and
practice suspending the editor (ctrl-z, fg) rather than restarting it. If
you must use something like Eclipse for a project, start it once and
never quit it.

• Inasmuch as extra hand actions on your part are isomorphic to the
computer delaying before giving you what you really want, master
"focus follows mouse" (yes, even Windows supports it) and editors
that don't involve new windows. Similarly, master keyboard
shortcuts and favor an editor that allows you to make your own
macros. Memorize the common ones shared across many
interfaces, like ctrl-a (beginning of line) and ctrl-e (end of line --
those both work in the shell as well).

• Buy fast storage.

Advice 1/3: Small Potatoes

03/25/2024 EECS 481 (W24) – Productivity 102

• Students often overemphasize the effect of low-level notions like typing
speed but underemphasize high-level decisions (like breaking down a
problem so its components can be solved in terms of transformations on
existing solutions). When adding numbers, we demonstrated this
concretely by taking what was to some a unitary atomic problem ("sum a
list of numbers") into smaller parts ("turn a list of numbers into an
arithmetic expression with regular expressions" and "invoke a
calculator").

• This is non-obvious for a few reasons, not the least of which is that the
parts actually appear to be larger, not smaller! So one trick is to gain
enough felicity with various small problems in computer science that you
can solve them quickly (see Sackman reading), as well as to retrieve
them quickly and do the chunking to break down the big problem in terms
of those parts (see Chi reading) without your machine setup actually
getting in the way (see Dougherty reading).

Advice 2/3

03/25/2024 EECS 481 (W24) – Productivity 103

● Ultimately, the bottleneck productivity limitation is
not your typing speed. The real obstacle is more a
conceptual limitation related to abstraction -- and
there may be no shortcut to years of practice, the
sort of study that ultimately changes the
organization of your brain.

● Good luck.

Advice 3/3

03/25/2024 EECS 481 (W24) – Productivity 104

• HW 5 is due today!
• HW 6a is due next Wednesday.

Questions?

