
Design for
Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 1

EECS 481 (W24)

03/18/24 EECS 481 (W24) – Design for Maintainability 2

• Requirement Analysis: Understanding what is needed.
• Planning: Determining the resources and schedule.
• Design: Architecting the software.
• Development: Writing the actual code.
• Testing: Ensuring the software works as intended.
• Deployment: Releasing the software to users.
• Maintenance: Updating and fixing the software as needed.

Software Development Life Cycle (SDLC)

03/18/24 EECS 481 (W24) – Design for Maintainability 3

• We want to deliver and support a quality software
product

• We understand the stakeholder requirements
• We understand process and design
• We understand quality assurance

• How should we make process and design decisions
the first time …

• … if software maintenance will be the dominant
activity?

The Story so far…

03/18/24 EECS 481 (W24) – Design for Maintainability 4

• We can invest up-front effort in designing software
to facilitate maintenance activities. This reduces
overall lifecycle costs.

• We will consider designing to improve
comprehension, documentation, change, reuse, and
testability.

• The metrics used for understandability, the category of
information conveyed by documentation, object-oriented
principles and design patterns, and coverage are all
relevant.

One-Slide Summary

03/18/24 EECS 481 (W24) – Design for Maintainability 5

• Underlying Principles for Designing for
Maintainability

• D for
• Reading
• Change
• Testing

Outline (the emotional journey)

03/18/24 EECS 481 (W24) – Design for Maintainability 6

1. (value) believe that spending more time up front on
designing for maintainability will save you time

2. (knowledge) provide one example of how to improve
your comments and commit messages

3. (knowledge) give a definition of a design pattern

4. (knowledge) suggest a couple ways part of a program
can be designed to facilitate testing

Learning Objectives: by the end of today’s lecture you
should be able to…

7

Motivation and Premise

03/18/24 EECS 481 (W24) – Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 8

• You are playing “Civilization”
• You want to build the Hagia Sophia quickly
• Do you build it now (costs 3000 production)?
• Or do you build the Forge

first (costs 100 production,
but then increases your
production by +10%)?

https://en.wikipedia.org/wiki/Hagia_Sophia

Analogy

https://en.wikipedia.org/wiki/Hagia_Sophia

03/18/24 EECS 481 (W24) – Design for Maintainability 9

• “It depends on the state of the world.”
• This is just a math problem: is T1 > T2 ?

• T1 = 3000/production
• T2 = (100/production) + (3000/(production*1.1))

• “To invest is to allocate money (or sometimes another
resource, such as time) in the expectation of some
benefit in the future”

• You almost always want to invest time during design
to produce maintainable software!

Investment

03/18/24 EECS 481 (W24) – Design for Maintainability 10

• Suppose maintenance is 70% of the lifetime cost of
software and the other 30% is coding and design

• Would you spend 50%
more on design if that
reduced the cost of
maintenance by 50%?

Investment in Maintenance

03/18/24 EECS 481 (W24) – Design for Maintainability 11

• Suppose maintenance is 70% of the lifetime cost of
software and the other 30% is coding and design

• Would you spend 50% more on design if that reduced
the cost of maintenance by 50%?
• Cost 1 = 30 + 70
• Cost 2 = 30*1.5 + 70*0.5

• We know the 70% number (indeed: 70-90%)
• But can we spend more on design to reduce

maintenance costs? Yes.

Investment in Maintenance

03/18/24 EECS 481 (W24) – Design for Maintainability 12

• Design for maintainability is a software engineering
principle that aims to make software products easier to
modify, update, and enhance over time.

• It involves applying good practices such as modularity,
cohesion, coupling, documentation, coding standards,
and testing to the software development process.

• Designing for maintainability can reduce the cost and
effort of software maintenance, which typically accounts
for a large portion of the software lifecycle.

Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 13

• Improved software quality and reliability
• Increased customer satisfaction and loyalty
• Reduced technical debt and rework
• Enhanced software reuse and adaptation
• Faster delivery and deployment of software
changes

Some Benefits of Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 14

• Balancing trade-offs between functionality,
performance, and maintainability
• Anticipating future requirements and changes
• Managing complexity and dependencies
• Communicating and collaborating with stakeholders
• Measuring and evaluating maintainability
https://www.sealights.io/software-quality/software-maintainability-what-it-means-to-build-maintainable-software/

https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/dfe6.pdf

Some Challenges of Design for Maintainability

https://www.sealights.io/software-quality/software-maintainability-what-it-means-to-build-maintainable-software/
https://extapps.ksc.nasa.gov/Reliability/Documents/Preferred_Practices/dfe6.pdf

03/18/24 EECS 481 (W24) – Design for Maintainability 15

• High-level plan:
• We now understand key

maintenance tasks (e.g.,
testing, code review, etc.)

• So, we should design our
software to make those
activities easier or more
efficient

• Even if that means that
coding will take longer

Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 16

• The first thing to change is you
• Because you likely still think of yourself

as a coder
• Student coder goals: quickly produce throwaway

software that runs efficiently and solves a well-
specified, set-in-stone task
• You feel good if it doesn't take you long, etc.

• You have to change your internal notion of a
“good job”
• You feel good for readable, elegant code, etc.

Pride

17

Design for
Comprehension

03/18/24 EECS 481 (W24) – Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 18

• Code Inspection and Code Review are critical
maintenance activities

• We consider improving readability and documentation
to aid code comprehension

• We distinguish between essential complexity, which
follows from the problem statement
• e.g., sorting requires N log(N) time

• and accidental readability, which can be more directly
controlled by software engineers

Design for Code Comprehension

03/18/24 EECS 481 (W24) – Design for Maintainability 19

Design for code comprehension is a software engineering
principle that aims to make software products easier to
read, understand, and modify by human developers.
It involves applying good practices such as naming
conventions, documentation, formatting, modularity,
abstraction, and testing to the software development
process.
Designing for code comprehension can improve the
quality, reliability, and maintainability of software products,
as well as reduce the cognitive load and effort of software
developers.

Design for Code Comprehension

03/18/24 EECS 481 (W24) – Design for Maintainability 20

• Improved software quality and reliability
• Reduced technical debt and rework
• Enhanced software reuse and adaptation
• Faster delivery and deployment of software
changes
• Increased collaboration and communication among
developers

Some of the Benefits of Design for Code Comprehension

03/18/24 EECS 481 (W24) – Design for Maintainability 21

• Balancing trade-offs between readability,
functionality, and performance

• Anticipating future requirements and changes
• Managing complexity and dependencies
• Communicating and documenting design decisions
• Measuring and evaluating code comprehension
https://www.lucidchart.com/blog/visualize-code-documentation

https://www.geeksforgeeks.org/comprehensions-in-python/

Some of the Challenges of Design for Code Comprehension

https://www.lucidchart.com/blog/visualize-code-documentation
https://www.geeksforgeeks.org/comprehensions-in-python/

03/18/24 EECS 481 (W24) – Design for Maintainability 22

• Readability is a human judgment of how easy a text is
to understand

• Commonly desired and mandated in software
• DOD MIL-M-38784B requires “10th grade reading level or

easier”
• So how can we improve code readability?

• It seems subjective
• Plan: ask many humans, model their average notion of

readability, relate to code features
• Use measurement plus machine learning

Readability

03/18/24 EECS 481 (W24) – Design for Maintainability 23

• Avoid long lines
• Avoid having many different

identifiers (variables) in the
same region of code

• Do include comments
• Fully blank lines may matter

more than indention

Learning a Metric for
Code Readability

[Buse et al., 2008]

03/18/24 EECS 481 (W24) – Design for Maintainability 24

• Descriptive modeling is a mathematical process
that describes [current] real-world events and the
relationships between factors correlated with them

• A prescriptive (or normative) model evaluates
alternative solutions to answer the question "What
is going on?" and suggests what ought to be done
or how things should work [in the future] according
to an assumption or standard

Descriptive vs. Prescriptive

03/18/24 EECS 481 (W24) – Design for Maintainability 25

• We can apply readability metrics automatically to code
• But because they are descriptive, this can lead to

perverse incentives
• It may be true that existing code with a few more blank

lines is more readable
• So, what if we just insert a blank line between every line

of code?
• That would maximize the metric, but …

• So, use them, but not blindly

Revenge of Perverse Incentive

03/18/24 EECS 481 (W24) – Design for Maintainability 26

• Appeal from a developer on a
mailing list:

• “Going forward, could I ask you to
be more descriptive in your
commit messages? Ideally should
state what you've changed and
also why (unless it's obvious) … I
know you're busy and this takes
more time, but it will help anyone
who looks through the log ...”

Comments and Documentation

03/18/24 EECS 481 (W24) – Design for Maintainability 27

• We can make a distinction between documentation that
summarizes what the code does (or what happened in a
commit)
• e.g., “Replaced a warning with an IllegalArgumentException”,

“this loop sorts by task priority”, “added an array bounds
check”

• And documentation that summarizes why the code
does that (or the change was made)
• e.g., “Fixed Bug #14235” or “management is worried about

buffer overruns”

What vs. Why

03/18/24 EECS 481 (W24) – Design for Maintainability 28

• You should focus on adding why information to your
documentation, comments and commit messages

• Because there is tool and process support for
adding or recovering what information

• For example, code inspection may reveal that a loop sorts
by task priority but will not reveal that this was done
because a customer required it

High-Quality Comments

03/18/24 EECS 481 (W24) – Design for Maintainability 29

• Documentation for @throws information, such as
@exception IllegalArgument if id is null
or id.equals(“”) can be automatically inferred via
tools
• Same approach as test

input generation
• Gather constraints to reach

the “throw” line
• Then rewrite them in English
• Instead of solving them
• Explains What the code does

Documenting Exceptions

03/18/24 EECS 481 (W24) – Design for Maintainability 30

• Tools are at least as accurate as humans 85% of the
time, and are better 25% of the time

• Tools can do
What –
so have
humans focus
on Why

“Why” for Exceptions

[Automatic Documentation
Inference for Exceptions]

03/18/24 EECS 481 (W24) – Design for Maintainability 31

• Appeal from a developer:
• “Sorry to be a pain in the neck

about this, but could we please use
more descriptive commit
messages? I do try to read the
commit emails, but... I can't really
tell what's going on”

• Example: revision 3909 of
iText's complete commit
message is “Changing the
producer info”

Documenting Commit Messages

03/18/24 EECS 481 (W24) – Design for Maintainability 32

• October 2021:
Amazon's Twitch
source code was leaked
in a 125 GB data breach

• the entirety of twitch.tv
with “with commit
history going back to its
early beginnings”

Commit Messages in the Wild (one “case study”)

03/18/24 EECS 481 (W24) – Design for Maintainability 33

• Average size of a non-empty human written log message: 1.1 lines
• Average size of a textual diff: 37.8 lines

Commit Messages in the Wild

03/18/24 EECS 481 (W24) – Design for Maintainability 34

• Tools and algorithms have been shown to replace or
provide 89% of the What information in log messages

• It is definitely good to describe what a change is doing
• But you should focus on documenting Why
• Get in the habit of providing two categories of

information for every pull request
• (And method summary, and …)

“Why” for Commit Messages

35

Trivia Break

03/18/24 EECS 481 (W24) – Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 36

• This associate justice of the Supreme Court was born in
the Bronx, went to Princeton and Yale, and was
appointed by Obama. She has been associated with
concern for the rights of defendants, calls for reform of
the criminal justice system, and dissents on issues of
race, gender and ethnic identity. For example, in
Schuette vs. CDAA (a case about a state ban on race-
and sex-based discrimination in public university
admissions), she dissented that “[a] majority of the
Michigan electorate changed the basic rules of the
political process in that State in a manner that uniquely
disadvantaged racial minorities.”

Trivia: SCOTUS

03/18/24 EECS 481 (W24) – Design for Maintainability 37

• This associate justice of the Supreme Court was
born in Brooklyn, went to Cornell and Columbia, and
was appointed by Clinton. She has been associated
with gender equality and women's rights. She has
been characterized for making passionate dissents
and a liberal view of the law. Her dissent in
Ledbetter v. Goodyear Tire & Rubber Co. is credited
with leading to the Lilly Ledbetter Fair Pay Act of
2009 that makes it easier to file equal pay lawsuits.
Also: lace jabot collection.

Trivia: SCOTUS 2

03/18/24 EECS 481 (W24) – Design for Maintainability 38

• This Japanese artist was called “the best animation
filmmaker in history” by Roger Ebert. He co-founded
Studio Ghibli, received international acclaim, and
directed films such as Princess Mononoke (highest-
grossing film in Japan) and Spirited Away (also the
highest-grossing film in Japan, and an Academy Award
winner). He just might like airships.

Trivia: Filmmakers

03/18/24 EECS 481 (W24) – Design for Maintainability 39

• This single-reed woodwind instrument features a
straight tube with a cylindrical bore and a flared bell.
It is believed to date back to the year 1700 in
Germany. It is commonly used in classical, military,
marching, klezmer, and jazz bands. Modern
orchestras use soprano versions of this instrument
in B♭ and A. Benny Goodman helped popularize its
use in big bands for swing. The Beatles song When
I'm Sixty-Four features a trio of these.

Trivia: Music

44

Design for
Change and Reuse

03/18/24 EECS 481 (W24) – Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 45

• In class, many programs are written once, to a fixed
specification, and thrown away

• In industry, many programs are written once and
then modified as requirements, customers, and
developers change

• Many fundamental tenets of object-oriented design
facilitate subsequent change

• You've seen these before, but now you are in a position to
really appreciate the motivation!

Design for Change and Reuse

03/18/24 EECS 481 (W24) – Design for Maintainability 46

The object-oriented design paradigm in software engineering is
a way of designing software systems based on the concept of
objects, which are entities that have data and behavior.
Objects can interact with each other by sending messages and
can be grouped into classes, which define their common
attributes and methods.
Object-oriented design aims to make software more modular,
reusable, extensible, and maintainable by following some
principles, such as abstraction, encapsulation, inheritance, and
polymorphism.
https://www.educative.io/blog/object-oriented-programming

The Object-Oriented Design Paradigm

https://www.educative.io/blog/object-oriented-programming

03/18/24 EECS 481 (W24) – Design for Maintainability 47

• Object-oriented design paradigm in software
engineering is widely used in many
programming languages such as Java, C++,
Python, etc.

https://mazer.dev/en/software-engineering/object-oriented-programming/oop-theory/what-is-oop-object-oriented-programming/

• It helps to create software systems that are
easy to understand, modify, test, and reuse.

Object-Oriented Programming Languages

https://mazer.dev/en/software-engineering/object-oriented-programming/oop-theory/what-is-oop-object-oriented-programming/

03/18/24 EECS 481 (W24) – Design for Maintainability 48

• Object-oriented design (OOD) is a software engineering
technique that involves creating a software system or
application using an object-oriented paradigm. This means
that the software is composed of objects, which are entities
that have attributes (data) and behaviors (methods).

• Objects can interact with each other through messages,
which are requests for actions or information.

• Objects can also be grouped into classes, which are
categories that define the common properties and methods of
a set of objects.

• Classes can inherit features from other classes, which allows
for code reuse and abstraction.

Object-Oriented Design (OOD)

03/18/24 EECS 481 (W24) – Design for Maintainability 49

• It allows for modeling complex systems in a natural and
intuitive way, by using real-world concepts and entities.

• It supports modularity, encapsulation, and polymorphism,
which are principles that enhance the maintainability,
extensibility, and reusability of software.
• It facilitates the development of large-scale and distributed
software systems, by enabling the decomposition of problems
into smaller and manageable units.
• It promotes software quality and reliability, by enabling the
use of design patterns, UML diagrams, and testing frameworks.

Benefits of OOD

03/18/24 EECS 481 (W24) – Design for Maintainability 50

• It requires a good understanding of the problem domain
and the user requirements, as well as the object-oriented
concepts and principles.

• It involves a trade-off between simplicity and flexibility,
as well as between performance and abstraction.
• It may introduce some overhead and complexity, due to
the use of inheritance, dynamic binding, and message
passing.
https://www.javatpoint.com/software-engineering-object-oriented-design
https://www.geeksforgeeks.org/oops-object-oriented-design/
https://www.scaler.com/topics/software-engineering/object-oriented-design/

Challenges of OOD

https://www.javatpoint.com/software-engineering-object-oriented-design
https://www.geeksforgeeks.org/oops-object-oriented-design/
https://www.scaler.com/topics/software-engineering/object-oriented-design/

03/18/24 EECS 481 (W24) – Design for Maintainability 51

Microsoft Word: This is a word processing software that allows users to
create, edit, format, and print documents. Microsoft Word is written in C++
and uses object-oriented design principles such as abstraction,
encapsulation, inheritance, and polymorphism.
Minecraft: This is a sandbox video game that allows players to build and
explore a virtual world made of blocks. Minecraft is written in Java and uses
object-oriented design principles such as abstraction, encapsulation,
inheritance, and polymorphism.
Instagram: This is a social media platform that allows users to share photos
and videos with their followers. Instagram is written in Python and uses
object-oriented design principles such as abstraction, encapsulation,
inheritance, and polymorphism.

Examples of Object-Oriented Software

03/18/24 EECS 481 (W24) – Design for Maintainability 52

UML diagrams are a way to visualize the design of a
system using different types of diagrams.
UML stands for Unified Modeling Language, and it is a
standard notation for many types of diagrams that can
be grouped into three main categories: behavior
diagrams, interaction diagrams, and structure
diagrams.
https://en.wikipedia.org/wiki/Unified_Modeling_Language

UML Diagrams

https://en.wikipedia.org/wiki/Unified_Modeling_Language

03/18/24 EECS 481 (W24) – Design for Maintainability 53

• UML was developed in the 1990s by a group of experts
from different object-oriented methods and notations.

• It was adopted as a standard by the Object Management
Group (OMG) in 1997 and has been revised several
times since then.

• UML can be used with various tools, such as Microsoft
Visio, Visual Paradigm, or Rational Software.

https://creately.com/blog/diagrams/uml-diagram-types-examples/

UML Diagrams

https://creately.com/blog/diagrams/uml-diagram-types-examples/

03/18/24 EECS 481 (W24) – Design for Maintainability 54

• Classes are open for extension and modification without
invasive changes

• Subtype polymorphism enables changes behind interfaces
• Classes encapsulate details likely to change behind (small)

stable interfaces
• Internal parts can be developed independently
• Internal details of other classes do not need to be

understood, contract is sufficient
• Class implementations and their contracts can be tested

separately (unit testing)

Design Desiderata

03/18/24 EECS 481 (W24) – Design for Maintainability 55

• Delegation is when one object relies
on another object for some subset of
its functionality
• e.g., in Java, Sort delegates

functionality to some Comparator
• Judicious delegation enables

code reuse
• Sort can be reused with arbitrary sort

orders
• Comparators can be reused with

arbitrary client code that needs to
compare integers

• Reduce “cut and paste” code and
defects

Design for Reuse: Delegation

03/18/24 EECS 481 (W24) – Design for Maintainability 56

• Amazon.com processes millions of orders each
year, selling in 75 countries, all 50 states, and
thousands of cities worldwide. These countries,
states, and cities have hundreds of distinct sales tax
policies and, for any order and destination,
Amazon.com must be able to compute the correct
sales tax for the order and destination. Over time:

• Amazon moves into new markets
• Laws and taxes in existing markets change

Design for Change: Motivation

03/18/24 EECS 481 (W24) – Design for Maintainability 57

• A software design pattern is a general, reusable
solution to a commonly occurring problem within a
given context in software design.

• It is not a finished design that can be transformed
directly into source or machine code. Rather, it is a
description or template for how to solve a problem
that can be used in many different situations.

https://en.wikipedia.org/wiki/Software_design_pattern

Software Design Patterns

https://en.wikipedia.org/wiki/Software_design_pattern

03/18/24 EECS 481 (W24) – Design for Maintainability 58

• Software design patterns are formalized best
practices that the programmer can use to solve
common problems when designing an application or
system.

• They typically show relationships and interactions
between classes or objects, without specifying the
final application classes or objects that are involved.
They also provide implementation hints and
examples.

Software Design Patterns

03/18/24 EECS 481 (W24) – Design for Maintainability 59

• They can speed up the development process by providing
tested, proven development paradigms.

• They can improve the readability and maintainability of the
code by using consistent and familiar terminology.

• They can promote code reuse and reduce duplication by
abstracting common features and behaviors.

• They can facilitate communication and collaboration among
developers by providing a common vocabulary and
reference.

Benefits of using Software Design Patterns

03/18/24 EECS 481 (W24) – Design for Maintainability 60

• They can increase the complexity and learning
curve of the code by introducing new concepts and
abstractions.

• They can be overused or misused, leading to
unnecessary or inappropriate design decisions.

• They can become outdated or irrelevant as
technology and requirements evolve.

Challenges of using Software Design Patterns

03/18/24 EECS 481 (W24) – Design for Maintainability 61

Factory Method: This is a creational pattern that defines an interface for creating an
object, but lets subclasses decide which class to instantiate. This allows the creation
process to be deferred to runtime.
Template method: This is a behavioral pattern that defines the skeleton of an
algorithm or an operation in terms of a series of steps and allows the subclasses to
implement some of the steps according to their specific needs while ensuring that the
overall structure and sequence of the algorithm are preserved by the superclass,
Decorator: This is a structural pattern that attaches additional responsibilities to an
object dynamically. This provides a flexible alternative to subclassing for extending
functionality.
Strategy: This is a behavioral pattern that defines a family of algorithms,
encapsulates each one, and makes them interchangeable. This lets the algorithm
vary independently from clients that use it.

Some popular software design patterns

03/18/24 EECS 481 (W24) – Design for Maintainability 62

• A software design pattern is a
general, reusable solution to a
commonly occurring problem
within a given context in
software design.

• (Other lectures have more
details.)

Software Design Patterns

03/18/24 EECS 481 (W24) – Design for Maintainability 63

• Problem: Clients need different variants
of an algorithm

• Solution: Create an interface for the algorithm,
with an implementing class for each variant of the
algorithm

• Consequences:
• Easily extensible for new algorithm implementations
• Separates algorithm from client context
• Introduces extra interfaces and classes: code can be

harder to understand; adds overhead if the strategies
are simple

Strategy Design Pattern

03/18/24 EECS 481 (W24) – Design for Maintainability 64

• Problem: An algorithm has customizable
and invariant parts

• Solution: Implement the invariant parts of the algorithm in an
abstract class, with abstract (unimplemented) primitive operations
representing the customizable parts of the algorithm. Subclasses
customize the primitive operations.

• Consequences
• Code reuse for the invariant parts of algorithm
• Customization is restricted to the primitive operations

• Inverted (“Hollywood-style”) control for customization: “don’t call
us, we’ll call you” (cf. comparison function in sorting)

• Invariant parts of the algorithm are not changed by subclasses

Template Method Design Pattern

03/18/24 EECS 481 (W24) – Design for Maintainability 65

• Both support variation in a larger context
• Template method uses inheritance + an overridable

method
• Strategy uses an interface and polymorphism

(via composition)
• Strategy objects are reusable across

multiple classes
• Multiple strategy objects are possible per class

Template Method vs. Strategy

03/18/24 EECS 481 (W24) – Design for Maintainability 66

• Design by Contract (DbC), is an approach for designing
software that focuses on specifying contracts that define
the interactions among components.

• A contract consists of preconditions, postconditions, and
invariants, which are expressed as assertions that must
be satisfied by the participating components.

• DbC was invented by Bertrand Meyer in the 1980s and
is supported by some programming languages, such as
Eiffel, Ada, and D.

https://en.wikipedia.org/wiki/Design_by_contract

Design by Contract (DbC),

https://en.wikipedia.org/wiki/Design_by_contract

03/18/24 EECS 481 (W24) – Design for Maintainability 67

• Design by contract prescribes that software designers
should define formal, precise, and verifiable interface
specifications for components, which extend the ordinary
definition of abstract data types with preconditions,
postconditions, and invariants

• A subclass can only have weaker preconditions
• My super only works on positive numbers, but I work on all numbers

• A subclass can only have stronger postconditions
• My super returns any shape, but I return squares

• This is just the Liskov Substitution Principle!

Design for Extensibility: Contracts and Subtyping

68

Design for
Testing

03/18/24 EECS 481 (W24) – Design for Maintainability

03/18/24 EECS 481 (W24) – Design for Maintainability 69

• Design for testability in software engineering is an approach
that aims to make software systems easier and more effective
to test, both during development and after deployment.

• Design for testability can help to improve the quality and
reliability of software systems by enabling various types of
testing, such as unit testing, integration testing, system testing,
acceptance testing, and regression testing.

• Design for testability can also help to reduce the cost and time
of software development and maintenance by facilitating test
automation, test coverage, test reuse, and test feedback.

https://www.infoq.com/articles/testability/
https://www.geeksforgeeks.org/design-for-testability-dft-in-software-testing/

Design for Testability (DFT)

https://www.infoq.com/articles/testability/
https://www.geeksforgeeks.org/design-for-testability-dft-in-software-testing/

03/18/24 EECS 481 (W24) – Design for Maintainability 70

• Separating the concerns and responsibilities of different
components, using modular and layered structures, interfaces,
and contracts.

• Encapsulating the internal details and states of the components,
using abstraction and information hiding.

• Isolating the dependencies and interactions of the components,
using dependency injection, inversion of control, and mocks or
stubs.

• Exposing the inputs and outputs of the components, using
parameters, return values, and exceptions.

• Verifying the behavior and functionality of the components, using
assertions, logging, and debugging tools.

Methods used in DFT

03/18/24 EECS 481 (W24) – Design for Maintainability 71

• If the majority cost of software engineering is
maintenance, the majority cost of maintenance is
QA, and the majority cost of QA is testing

• It behooves us to design our software so that
testing is effective

• Design to admit testing
• Design to admit fault injection
• Design to admit coverage
• Recognize “free test” opportunities

Design for Testability

03/18/24 EECS 481 (W24) – Design for Maintainability 72

• Consider a library-oriented architecture (LOA), a
variation of modular programming, or service-oriented
architecture with a focus on the separation of concerns
and interface design
• “Package logical components of your application independently

- literally as separate gems, eggs, RPMs, or whatever - and
maintain them as internal open-source projects … This
approach combats the tightly coupled spaghetti so often
lurking in big codebases by giving everything the Right Place in
which to exist.”

https://en.wikipedia.org/wiki/Library_Oriented_Architecture

Design to Admit Testing

https://en.wikipedia.org/wiki/Library_Oriented_Architecture

03/18/24 EECS 481 (W24) – Design for Maintainability 73

• Recall: it is hard to generate test inputs with high
coverage for areas “deep inside” the code
• Must solve the constraints for main(), then for foo(), then for

bar(), etc., all at the same time!
• The farther code is from an entry point,

the harder it is to test
• This is one of the motivations behind Unit Testing

• Solution: design with more entry points for self-
contained functionality (cf. AVL tree, priority queue, etc.)

Unit Testing

03/18/24 EECS 481 (W24) – Design for Maintainability 74

• Suppose you are designing Angry Birds
• It's a game, and also a simulation, so MVC is a

reasonable choice
• Design so that it can be tested without someone

actually playing the game!
• e.g., have an interface where abstract commands can be

queued up: one way to get them is from the UI, but another is
programmatic

• “If I create a world with blocks X, Y and Z and then we launch
bird A at angle B, does C occur within five timesteps?”

Example: Model View Controller

03/18/24 EECS 481 (W24) – Design for Maintainability 75

• MVC, or Model-View-Controller, is a software architectural
design pattern that separates application logic into three
interrelated components- the model, view, and controller.

• The model is the component that handles the data and
business logic of the application.

• The view is the component that handles the presentation and
user interface of the application.

• The controller is the component that handles the
communication and coordination between the model and the
view. https://en.wikipedia.org/wiki/Architectural_pattern

Model View Controller (MVC)

https://en.wikipedia.org/wiki/Architectural_pattern

03/18/24 EECS 481 (W24) – Design for Maintainability 76

Fault injection is a testing technique for understanding how
computing systems behave when stressed in unusual ways.
This can be achieved using physical- or software-based
means or using a hybrid approach.
Fault injection can help to improve the quality and reliability of
software systems by enabling various types of testing, such as
unit testing, integration testing, system testing, acceptance
testing, and regression testing.
Fault injection can also help to identify and exploit
vulnerabilities in software systems, such as bypassing security
checks or corrupting data.
https://en.wikipedia.org/wiki/Fault_injection

Fault Injection

https://en.wikipedia.org/wiki/Fault_injection

03/18/24 EECS 481 (W24) – Design for Maintainability 77

Fault injection requires special tools and equipment to perform
the attacks, such as glitch generators, electromagnetic pulse
generators, or lasers.
Some of these tools are commercially available, such as
ChipWhisperer, ChipShouter, or Spider. Others can be custom-
built by the attackers.
The cost and complexity of fault injection attacks vary
depending on the type of fault injection and the target system.
https://www.riscure.com/fault-injection/

Fault Injection Tools

https://www.riscure.com/fault-injection/

03/18/24 EECS 481 (W24) – Design for Maintainability 78

• Microsoft's Driver Verifier sat between a driver and the
operating system and “pretended to fail (some of the
time)” to expose poor driver code

• The CHESS project sat between a program and the
scheduler and “forced strange schedules” to expose
poor concurrency code

• Hardware, OS and Networking errors can occur
infrequently, but you still want to test them
• Must design for it!

Fault Injection

03/18/24 EECS 481 (W24) – Design for Maintainability 79

• The old adage: the solution to everything in computer
science is either to add a level of indirection or to add a
cache

• Don't have your code call fopen() or cout or whatever
directly

• Instead, add a very thin level of indirection where you
call my_fopen which then calls fopen

• Later add “if coin_flip() then fail else ...” to that
indirection layer to inject faults

Level Of Indirection

03/18/24 EECS 481 (W24) – Design for Maintainability 80

• Code coverage has many flaws
• At a high level, simple coverage metrics do not align with

covering requirements (cf. traceability)
• Solutions

• Better test suite adequacy metrics (mutation, etc.)
• Design and write the code so that high code coverage

correlates with high requirements coverage!

Designing for Coverage-based Testing

03/18/24 EECS 481 (W24) – Design for Maintainability 81

• Line coverage was often inadequate because “visit
line 5 when ptr==null” could be very different from
“visit line 5 when ptr !=null”

• Because “*ptr = 9” is really “if (ptr == null) abort(); else
*ptr = 9;”

• Consider explicit conditionals that check
requirements adherence

• To get coverage points for reaching the true branch, the
test will have to satisfy the requirement

Recall: Implicit Control Flow

03/18/24 EECS 481 (W24) – Design for Maintainability 82

• Quality requirement: “finish X within Y time”
• Add in “get the time”, “do X”, “get the time”,

“subtract”, “if t2 – t1 < Y then ...”
• You could also encode these in test oracles
• Explicit Conditional Pros

• Testing tools can help you reason about partial progress
• Testing tools can try to falsify claims

• Explicit Conditional Cons
• Muddies meaning of coverage (100% not desired)

Requirement Coverage

03/18/24 EECS 481 (W24) – Design for Maintainability 83

• Many programs transform data from one format to
another (cf. adapter pattern)

• If the program is implementing a function with similar
domain and range, you can often get high-coverage
tests “for free” by composing the program with itself
• If possible, design your program so that this is possible (cf. as

a library)

Tests for Free

03/18/24 EECS 481 (W24) – Design for Maintainability 84

• Inversion
• Forall X. unzip(zip(x)) = x
• Forall X. deserialize(serialize(x)) = x
• Forall X. decrypt(encrypt(x)) = x

• Convergence
• Forall X. indent(indent(x)) = indent(x)
• Forall X. stable_sort(stable_sort(x)) = stable_sort(x)
• Forall P1. Forall I. If P2 = compile(decompile(compile(P1)))

then P1(I)=P2(I)
• mp3enc/mp3dec, jpg2png/png2jpg

Examples

Note: you may need a
non-exact comparator!

03/18/24 EECS 481 (W24) – Design for Maintainability 85

• Find 5 commit messages and 5 comments on github
and try to write “Why” documentation for them

• Write an Eiffel program that uses pre- and post-
conditions and inheritance

• How would you design the Autograder to support fault
injection?

• How would you design mutate.py as a library that takes
a list of edit operations? When should mutate(p,[e1,e2])
= mutate(p,[e2,e1])?

Hints for Practice

03/18/24 EECS 481 (W24) – Design for Maintainability 86

• HW5 is due next
Monday!

Questions?

