
Requirements,
Validation,
and Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 1

EECS 481 (W24)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 2

• Quality assurance is critical to software engineering

• Ok, so we want to build a quality product.
• What are we supposed

to be building again?
• Remember Design of a system is a

process of having a realization from a
specification or a requirement.

• Validation is a process of ensuring that
a realization satisfies its specification
or requirement.

• We should ask the customer!
• But how?

The Story so far…

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 3

• Requirements elicitation relies on communication with
stakeholders. This includes identifying relevant parties,
understanding the domain, interviews, and the
exploration of alternatives. Requirements often conflict.

• Validation in SE checks the correctness of
requirements;

• verification in SE checks the correctness of software.
• Risk in SE includes both the likelihood and the

consequence of failure.

One-Slide Summary

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 4

• Define Requirements Elicitation Process

• Talk through each step of process
• Step 1 – Stakeholders
• Step 2 – Domain Knowledge
• Step 3 – Discover the real needs
• Step 4 – Explore Alternatives

• Revisit Risk

Outline (the emotional journey)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 5

1. (knowledge) describe the steps in requirements elicitation

2. (knowledge) provide examples of what can go wrong in interviews

3. (knowledge) list types of (requirements) conflicts and strategies for
resolving them

4. (knowledge) explain the difference between verification and validation
with respect to software

5. (knowledge) define risk response strategies and describe how to
analyze risk

Learning Objectives: by the end of today’s lecture you
should be able to…

6

Step 1: Stakeholders

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 7

• Requirements elicitation is the process of
identifying system requirements through
communication with stakeholders Typically:

• Step 1. Identify Stakeholders
• Step 2. Understand the domain

• Analyze artifacts, interact with stakeholders
• Step 3. Discover the real needs

• Interview stakeholders, resolve conflicts
• Step 4. Explore alternatives to address needs

Requirements Elicitation

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 8

• A stakeholder is a person or group who has an interest
or concern in something, especially a business or an
organization.

• Stakeholders can be internal or external to the entity
they are involved with or affected by.

• For example, investors, employees, customers, and
suppliers are common stakeholders of a corporation.

• They have a stake in the success or failure of the
corporation, and they can influence or be influenced by
its actions and outcomes.

Stakeholder

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 9

• A stakeholder is any person or group
who will be affected by the system,
directly or indirectly
• Customers, other parts of your own

organization, regulatory bodies, etc.
• Stakeholders may disagree
• Requirements process should trigger

negotiations to resolve conflicts.
• (We will return to conflicts)

Stakeholder

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 10

Common criteria for identifying relevant stakeholders
include:
• Relevant positions in the organization
• Effective role in making decisions about the systems
• Level of domain expertise
• Exposure to perceived problems
• Influence in system acceptance
• Personal objectives and conflicts of interest

Stakeholder Analysis

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 11

12

Step 2:
Understanding
Domain

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 13

• Content analysis involves learning about the system
domain
• Books, articles, wikipedia, etc.

• This often focuses on the system to be built or replaced
• How does it work? What are the problems? Are there manuals?

Bug reports?
• But it also involves the organization
• And reusing knowledge from other systems

Step 2: Understanding the Domain

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 14

• Consider the list of qualities (from previous lecture) and select the relevant ones
• Privacy, security, reliability, etc.
• Even “performance” can be complicated

Domain-Independent Checklist

15

Step 3: Interviews

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 16

• Having identified stakeholders of interest and
information to be gathered…
• Conduct an interview

Step 3: Discover Real Needs via Interviews

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 17

• Having identified stakeholders of interest and
information to be gathered …

• Conduct an interview
• This can be structured or unstructured, individual or group, etc.
• It may even be a simple phone call

• Record and transcribe interview
• Report important findings
• Check validity of report with interviewee

Step 3: Discover Real Needs via Interviews

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 18

• Get basic facts about the interviewee before (role,
responsibilities, …)

• Review interview questions before interview
• Begin concretely with specific questions, proposals: work

through prototype or scenario
• Be open-minded; explore additional issues that arise

naturally, but stay focused on the system
• Contrast with current system or alternatives

• Explore conflicts and priorities
• Plan for follow-up questions/sessions

Requirements Interview Advice

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 19

• What problems do you run into in your day-to-day
work? Is there a standard way of solving it, or do you
have a workaround?

• Why is this a problem? How do you solve the problem
today? How would you ideally like to solve the problem?

• Keep asking follow-up questions (“What else is a
problem for you?”, “Are there other things that give
you trouble?”) for as long as the interviewee has
more problems to describe

Example: Identifying Problems (1)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 20

• So, as I understand it, you are experiencing the following
problems/needs …
• Describe the interviewee’s problems and needs in your own

words: often you do not share the same image. It is very very
common to not understand each other even if at first you think
you do.

• Just to confirm, have I correctly understood the
problems you have with the current solution?
• Are there any other problems you’re experiencing? If so, what

are they?

Example: Identifying Problems (2)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 21

• Strengths
• Reveal what stakeholders do, feel,

prefer
• How they interact with the system
• Challenges with current systems

• Weaknesses
• Subjective, yield inconsistencies
• Hard to capture domain knowledge
• Organizational issues, such as politics
• Hinges on interviewer skill

Interview Tradeoffs

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 22

• We acquire requirements from many sources
• Elicit from stakeholders
• Extract from policies or other documentation
• Synthesize from above: estimation and invention

• Stakeholders do not always know what they want (!)
• Be faithful to stakeholder needs and expectations
• Anticipate additional needs and risks
• Validate that “additional needs” are necessary or desired

Capturing and Synthesizing

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 23

• They can be expensive and time-consuming,
especially if there are many stakeholders to
interview, or if they are located in different places.
• Therefore, it is important to plan and budget the

interviews carefully, and to select the most relevant
and representative stakeholders to interview.

https://www.epa.gov/international-cooperation/public-participation-guide-stakeholder-interviews

Problems with stakeholder interviews

https://www.epa.gov/international-cooperation/public-participation-guide-stakeholder-interviews

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 24

• They require skilled interviewers who can ask
the right questions, listen actively, probe deeper,
and build rapport and trust with the interviewees.

• Interviewers also need to be aware of their own
biases and assumptions and avoid leading or
influencing the interviewees' responses.

• Therefore, it is important to train and prepare the
interviewers well, and to use a consistent and
structured interview protocol.

Problems with stakeholder interviews

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 25

• They may elicit negative or conflicting responses from the
interviewees, who may have different opinions, interests, or
agendas.

• Some interviewees may also be reluctant or resistant to
share information or feedback or may provide inaccurate or
misleading information.

• Therefore, it is important to validate and triangulate the data
collected from the interviews with other sources and
methods, such as surveys, observations, or documents.

https://methods.18f.gov/discover/stakeholder-and-user-interviews/.

Problems with stakeholder interviews

https://methods.18f.gov/discover/stakeholder-and-user-interviews/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 26

Analogy: Ethnography

(Dr. Margaret Mead in Samoa, 1975)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 27

• Observe people using their current system
• Passive: no interference with task performers

• Watch from outside, record (notes, video), edit transcripts,
interpret

• Protocol analysis: they concurrently explain it
• Active: you get involved in the task, even become a team

member
• Ethnographic studies, over long periods of time,

discover emergent properties of social group involved

Observation and Ethnography

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 28

• In her popular 1928 book, Coming of Age in Samoa,
Mead presented Samoan culture as a social system
that allowed many adolescents to experiment
sexually before marriage

• Based on observations, interviews, ethnographic studies,
etc.

• Mead almost certainly had a political agenda (she
was a sexual progressive, etc.)

• But that did not make her wrong

Margaret Mead: an American Cultural Anthropologist

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 29

Dr. Margaret Mead's studies in Samoa, particularly her work
published in "Coming of Age in Samoa" in 1928, provided
several key lessons and insights:
• Cultural Determinism: Mead's findings suggested that

adolescence and its associated stresses are not solely
biological but are significantly influenced by cultural factors.

• Her observations indicated that Samoan girls experienced a
more relaxed adolescence compared to their American
counterparts, which she attributed to the different cultural
expectations and social structures.

Lessons Learned: Cultural Determinism

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 30

• Nature vs. Nurture Debate: Mead's work contributed
to the ongoing discussion about the relative
importance of genetic factors (nature) and
environmental influences (nurture) in human
development.
• She argued for the strong role of nurture, proposing

that cultural upbringing plays a crucial part in
shaping individual behavior.

Lessons Learned: Nature vs. Nurture Debate

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 31

• Sexual Norms and Gender Roles: The study
challenged Western views on sex, family structure,
and gender roles by presenting a society with
different norms and practices.
•Mead's observations suggested that the openness

and fluidity of sexual norms in Samoan culture
contributed to the ease of adolescent development.

Lessons Learned: Sexual Norms and Gender Roles

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 32

• Ethnographic Methodology: Mead's systematic
and immersive approach to fieldwork set a
precedent for future anthropological studies.
• She emphasized the importance of living among

the people being studied to gain a deeper
understanding of their culture.

Lessons Learned: Ethnographic Methodology

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 33

• Controversy and Criticism: Mead's conclusions were
subject to controversy.
• Some anthropologists, notably Derek Freeman, later

challenged the accuracy of her findings, arguing that she
had been misled by her informants.
• This criticism led to a reevaluation of her work and a

broader discussion on the complexities of field research
and the interpretation of anthropological data.

Controversy and Criticism

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 34

• In 1983, Derek Freeman's Margaret Mead and
Samoa: The Making and Unmaking of an
Anthropological Myth, suggested that Mead was just
gullible. Two of her informants had been lying:
“Never can giggly fibs have had such far-reaching
consequences in the groves of Academe.”

• This significantly discredited her work
• It seemed his follow-on interviews found very

different results. How could that be?

Mead vs. Freeman

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 35

Freeman was lying
• In 1996, Martin Orans used Mead's notes to show

that “such humorous fibbing could not be the basis
of Mead's understanding. Freeman asks us to
imagine that the joking of two women, pinching
each other as they put Mead on about their sexuality
and that of adolescents, was of more significance
than the detailed information she had collected
throughout her fieldwork.”

Mead vs. Freeman (Cont’d)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 36

• In 2011, Paul Shankman used Derek Freeman's own
notes and found that his interviews were conducted in
problematic ways:
• “The 1987 interview with Fa'apua'a was arranged and carried

out by Fofoa's son, a Samoan Christian of high rank who was
convinced that Mead had besmirched the reputation of
Samoans by portraying his mother, her friend Fa'apua'a, and
other Samoans as sexually licentious.”

• “Fofoa's son told Fa'apua'a "that the purpose of the interview
was to correct 'the lies she [Mead] wrote in her book, lies that
insult you all.'"

Mead vs. Freeman (Cont’d)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 37

• Shankman notes that “there is no information on the sex
from these two women in Mead's field notes”: she could
not have been fooled by women who were not her
informants
• Instead, she drew her conclusions from data on 25 adolescent

girls, of whom over 40% were sexually active, and interviews
with men and women

• While she may have downplayed some aspects of
Samoan sexuality (e.g., rape and physical punishment
for those who violated norms), she did not invent a false
narrative

Mead vs. Freeman (Cont’d)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 38

• Why am I telling you so
much about ethnography
and cultural anthropology?

• Want to read more? Try
“Sex, Lies, and Separating
Science From Ideology”:
https://www.theatlantic.com/health/archive/20
13/02/sex-lies-and-separating-science-from-
ideology/273169/

Requirements Interviews vs. Ethnography

https://www.theatlantic.com/health/archive/2013/02/sex-lies-and-separating-science-from-ideology/273169/
https://www.theatlantic.com/health/archive/2013/02/sex-lies-and-separating-science-from-ideology/273169/
https://www.theatlantic.com/health/archive/2013/02/sex-lies-and-separating-science-from-ideology/273169/

39

Trivia Break

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 40

• Identify the philosopher associated with each quote:
• “Man is by nature a political animal.” (~350 BCE)
• “All human knowledge begins with intuitions, proceeds from

thence to concepts, and ends with ideas.” (1781)
• “More natural is our position in politics: We see problems of

power, of one quantum of power against another. We do not
believe in any right that is not supported by the power of
enforcement: we feel all rights to be conquests.” (1888)

• “It is nonsense to assert that revelry, vice, ecstasy, passion,
would become impossible if man and woman were equal in
concrete matters.” (1949)

Trivia: Western Philosophy

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 41

• This country unified from three kingdoms into a
singular political entity in 676. It gave rise to the
world's first metal movable type (13th century) and
a lovely constructed alphabet (15th century) but
was weakened by Mongol invasions and annexation
by Japan. Its largest city is the fourth most
economically powerful in the world, measured by
GDP.

Trivia: Countries

42

Conflict
Resolution

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 43

• Conflict resolution in software engineering is the process of
identifying, analyzing, and resolving conflicts that arise
among software stakeholders, such as developers,
managers, customers, and users.

• Conflicts can occur due to various reasons, such as different
goals, expectations, opinions, preferences, values, or
perspectives.

• Conflicts can also affect various aspects of software
development, such as requirements, design, implementation,
testing, or maintenance.

https://blog.logrocket.com/handling-conflict-on-a-software-engineering-team/

Conflicts Resolutions

https://blog.logrocket.com/handling-conflict-on-a-software-engineering-team/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 44

• Conflict resolution in software engineering is important for ensuring the
quality and success of software projects.

• Conflicts can have negative impacts on the software product, such as
errors, defects, delays, or failures.

• Conflicts can also have negative impacts on the software process, such
as reduced productivity, efficiency, collaboration, or satisfaction.

• Therefore, conflict resolution in software engineering aims to find
solutions that satisfy the needs and interests of all parties involved, and
that improve the software product and process.

https://leaddev.com/culture-engagement-motivation/managing-conflict-engineering-teams.

Conflicts Resolutions (Cont’d)

https://leaddev.com/culture-engagement-motivation/managing-conflict-engineering-teams

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 45

Communication: This involves exchanging information and feedback
among stakeholders to understand the sources and effects of conflicts, and
to express their views and feelings. Communication can be verbal or
written, formal or informal, direct or indirect.
https://thesai.org/Downloads/Volume7No10/Paper_44-Software_Requirements_Conflict_Identification.pdf.

 Negotiation: This involves discussing and bargaining among stakeholders
to reach a mutually acceptable agreement or compromise.
Negotiation can be cooperative or competitive, distributive or integrative.
https://medium.com/swlh/handling-conflicts-in-software-engineering-teams-2e537e9f5d33.

Methods for Conflicts Resolutions

https://thesai.org/Downloads/Volume7No10/Paper_44-Software_Requirements_Conflict_Identification.pdf
https://medium.com/swlh/handling-conflicts-in-software-engineering-teams-2e537e9f5d33

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 46

Mediation: This involves involving a third party who facilitates
the communication and negotiation among stakeholders to
help them find a solution. The mediator does not impose a
solution but rather assists the stakeholders in reaching one.
Arbitration: This involves involving a third party who evaluates
the arguments and evidence of stakeholders and makes a
binding decision for them. The arbitrator acts as a judge who
imposes a solution based on rules and criteria.

Methods for Conflicts Resolutions (Cont’d)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 47

• Terminology clash: same concept named differently in
different statements
• e.g., library: “borrower” vs. “patron”

• Designation clash: same name for different concepts in
different statements
• e.g., “user” for “library user” vs. “library software user”

• Structure clash: same concept structured differently in
different statements
• e.g., “latest return date” as time point (e.g. Fri 5pm) vs. time

interval (e.g. Friday)

Identifying Conflicts: Inconsistencies

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 48

• In a strong conflict, statements are not satisfiable
together
• e.g., “participant constraints may not be disclosed to anyone

else” vs. “the meeting initiator must know participant
constraints”

• In a weak conflict (divergence), statements are not
satisfiable together under some boundary condition
• e.g., “patrons shall return borrowed copies within X weeks” vs

“patrons may keep borrowed copies as long as needed”
contradicts only if “needed>X”

Conflict Strength

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 49

Contracts
“In Real Life”

https://law.justia.com/cases/federal/district-courts/FSupp/190/116/1622834/

https://law.justia.com/cases/federal/district-courts/FSupp/190/116/1622834/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 50

• “No Silver Bullet” (this is why they pay you)
• For Terminology, Designation and Structural

conflicts: build a glossary
• For Weak and Strong Conflicts: negotiation is

typically required
• If the cause is different stakeholder objectives, it must be

resolved outside of RE
• If the cause is quality desires (e.g., “Good, cheap, on-time:

pick two”), you explore quality tradeoffs

Resolving Conflicts

51

Step 4: Explore
Alternatives

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 52

• Alternative solutions and tradeoffs are typically
presented via prototypes, mockups, or storyboards

• Mockups can be low- or high-fidelity
• Rapid prototypes can be throw-away (designed to learn

about the problem, not for actual use) or evolutionary
(intended to be incorporated into the final product)

• Stories detail who the players are, what happens to
them, how it happens, why it happens, and what could
go wrong

Step 4: Explore Alternatives

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 53

• Prototypes in software engineering are incomplete or preliminary
versions of software applications that are used to test the
feasibility, design, functionality, and usability of the software
product before developing the final product.

• Prototypes can help software engineers communicate with
users and stakeholders, gather feedback and requirements,
identify and resolve issues, and evaluate the performance and
quality of the software product.

• Prototypes can also help software engineers to reduce the cost
and risk of software development, as well as to improve
customer satisfaction and loyalty.

https://en.wikipedia.org/wiki/Software_prototyping

https://www.geeksforgeeks.org/software-engineering-prototyping-model/

Prototypes

https://en.wikipedia.org/wiki/Software_prototyping
https://www.geeksforgeeks.org/software-engineering-prototyping-model/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 54

• Mockups in software engineering are a way of designing user interfaces
on paper or in computer images, to show how the software product will
look like, but without any functionality or interactivity.

• Mockups are used to communicate the design ideas, test the layout, color,
typography, and navigation, and gather feedback from users and
stakeholders.

• Mockups are usually created after wireframes, which are low-fidelity
sketches of the basic structure and content of the software product, and
before prototypes, which are high-fidelity simulations of the software
product with some functionality and interactivity.

• Mockups can be created using various tools, such as Photoshop, Sketch,
Figma, or UXPin.

https://en.wikipedia.org/wiki/Mockup
/ttps://www.uxpin.com/studio/blog/what-is-a-mockup-the-final-layer-of-ui-designا

Mockups

https://en.wikipedia.org/wiki/Mockup
https://www.uxpin.com/studio/blog/what-is-a-mockup-the-final-layer-of-ui-design/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 55

• Storyboards and mockups definitely do exist, but
are often informal and incomplete

Informality

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 56

• Humans are better at recognizing and evaluating
solutions than facing blank pages

• Mockups and prototypes explore uncertainty in
requirements
• Validate that we have the right requirements
• Get feedback on a candidate solution
• “I'll know it when I see it.”

• Stories illuminate the system by walking through real or
hypothetical sequences

Exploration

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 57

• Formal standards for
writing down requirements
exist (e.g., “may” vs. “must”)
but are not a focus for this
course

• They vary by domain and
company (e.g., startup vs.
established)

Requirements Documentation

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 58

• Requirements elicitation is the process of
identifying system requirements through
communication with stakeholders. Typically:

• Step 1. Identify stakeholders
• Step 2. Understand the domain

• Analyze artifacts, interact with stakeholders
• Step 3. Discover the real needs

• Interview stakeholders, resolve conflicts
• Step 4. Explore alternatives to address needs

Requirements Elicitation: Reminder

59

Other aspects of
Requirements

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 60

• Correct
• Consistent
• Unambiguous
• Complete
• Feasible
• Relevant
• Testable
• Traceable

Requirements for Requirements?

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 61

• Validation is the task of determining if the
requirements are correct

• Are the requirements complete? Do they reflect the
client's problem? Are they consistent?

• Verification is the task of determining if the
software is correct (e.g., by testing)

• Does the software satisfy the specification?
• Is the specification correct with respect to the

requirements, assuming the domain properties hold?

Verification and Validation in SE

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 62

• Testing
• Mathematical proofs
• Simulation
• Static analysis
• Dynamic analysis
• Checks for unreachable

states or transitions
(model checking)

• Interviews
• Reading
• Walkthroughs
• Prototypes
• Scenarios
• Checklists
• Modeling

Approaches
VerificationValidation

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 63

• We recursively decompose a system, from the highest
level of abstraction (stakeholder requirements) into
lower-level subsystems and implementation choices

• This decomposition establishes traceability, which
identifies relationships between requirements and
implementations

• Traceability is important for verification and when
requirements change

• Decomposition helps both validate and verify

Decomposition

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 64

Decomposition Example

65

Revisiting Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 66

• In this context, a risk is an uncertain factor that may
result in a loss of satisfaction of a
corresponding objective

• For example:
• The system delivers a radiation overdose to patients (Therac-

25, Theratron-780)
• Medication administration record (MAR) knockout

(provided inaccurate medication plans hospital-wide)
• Premier Election Solutions vote-dropping “glitch”

Risks

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 67

Swiss Cheese Model

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 68

• Risk consists of multiple parts:
• The likelihood of failure
• The negative consequences or

impact of failure
• In advanced models: the causal agent

and weakness
• Mathematically,

Risk = Likelihood ∙ Impact

Risk Assessment

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 69

• Risk assessment in Software Engineering is the process of
identifying, analyzing, and prioritizing risks that could
potentially affect the success of a software project.

• It involves evaluating the likelihood and impact of various
risks, such as technical challenges, project management
issues, and external factors, to determine how they could
impede project objectives.

• The goal is to develop strategies to manage or mitigate these
risks effectively.

Risk Assessment in Software Engineering

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 70

• Risk Identification: Spotting potential risks that could negatively
influence the project.

• Risk Analysis: Evaluating the risks to understand their nature,
causes, and potential consequences.

• Risk Prioritization: Ranking the risks based on their likelihood and
impact to focus on the most critical ones.

• Risk Planning: Developing plans to avoid, transfer, mitigate, or
accept risks.

• Risk Monitoring: Continuously tracking identified risks and new
risks that may emerge during the project lifecycle.

The Main Steps in Risk Assessment in SE

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 71

• The Common Vulnerability Scoring System (CVSS) is a
framework for rating the severity of security
vulnerabilities in software.

• It provides a standardized way to capture the principal
characteristics of a vulnerability and produce a numerical
score reflecting its severity, which can then be translated
into a qualitative representation (such as low, medium,
high, and critical) to help organizations properly assess
and prioritize their vulnerability management processes.

Common Vulnerability Scoring System (CVSS)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 72

CVSS scores are determined based on three metric groups:
• Base Metrics: These represent the intrinsic qualities of a

vulnerability that are constant over time and across user
environments.

• Temporal Metrics: These reflect the characteristics of a
vulnerability that may change over time but not among user
environments.

• Environmental Metrics: These are customized to reflect the
impact of the vulnerability on a particular user's environment.

• The CVSS score ranges from 0 to 10, with 10 being the most
severe.

Scoring CVSS

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 73

• The Common Vulnerability Scoring System consists of:
• 6 base metrics (access vector, complexity, confidentiality impact, …)
• 3 temporal metrics (exploitability, remediation, …)
• 5 environmental metrics; all qualitative ratings (collateral damage, …)

• BaseScore = round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)–
1.5)*f(Impact))

• Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))
• Exploitability = 20 * AccessVector * AccessComplexity * Authentication
• f(Impact) = 0 if Impact=0, 1.176 otherwise
https://nvd.nist.gov/vuln-metrics/cvss

https://www.first.org/cvss/v2/guide

Example: CVSS V2.10 Scoring

https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/v2/guide

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 74

• No effect – failure has no impact on safety, aircraft
operation, or crew workload

• Minor – failure is noticeable, causing passenger
inconvenience or flight plan change

• Major – failure is significant, causing passenger
discomfort and slight workload increase

• Hazardous – high workload, serious or fatal injuries
• Catastrophic – loss of critical function to safely fly and

land

Example: DO-178b Aviation Failure Impact Categories

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 75

• Fault Tree Analysis (FTA) is a type of failure analysis in
which an undesired state of a system is examined.

• This analysis method is mainly used in safety
engineering and reliability engineering to understand
how systems can fail, to identify the best ways to reduce
risk, and to determine the probability of a failure event.

• FTA is used in various industries, such as aerospace,
nuclear power, chemical, pharmaceutical, and software.

https://en.wikipedia.org/wiki/Fault_tree_analysis

Fault Tree Analysis

https://en.wikipedia.org/wiki/Fault_tree_analysis

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 76

FTA is a graphical tool that uses symbols and logic gates to represent the
causes and effects of system failures.
The top event is the undesired state or failure of the system, and the basic
events are the lowest-level failures or faults that can occur.
The logic gates show how the basic events combine to cause higher-level
events until the top event is reached.
FTA can be used to perform qualitative and quantitative analysis of system
failures, such as identifying the minimal cut sets, calculating the importance
measures, and performing sensitivity analysis.
https://sixsigmastudyguide.com/fault-tree-analysis/

Fault Tree Analysis (Cont’d)

https://sixsigmastudyguide.com/fault-tree-analysis/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 77

FTA can help to improve the reliability and safety of systems
by providing a clear and structured way to identify and
eliminate potential failure modes.
FTA can also help to design and optimize systems by
evaluating different scenarios and alternatives.
FTA can be used alone or in combination with other methods,
such as Failure Mode and Effects Analysis (FMEA) or
Reliability Block Diagram (RBD).
https://fiixsoftware.com/glossary/fault-tree-analysis/

Uses of Fault Tree Analysis (Cont’d)

https://fiixsoftware.com/glossary/fault-tree-analysis/

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 78

• Fault tree analysis is a top-down technique to
model, reason about, and analyze risk

• A fault tree analysis decomposes a particular type
of failure into constituent potential causes and
probabilities

• It defines the scope of system responsibilities and
identifies unacceptable risk conditions that should
be mitigated

Fault Tree Analysis (Cont’d)

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 79

Fault Tree Diagrams

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 80

Example Fault Tree to Quantify Risk

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 81

An example of a software fault tree

Incorrect
sugar level
measured

Incorrect
insulin dose
administered

or

Correct dose
delivered at
wrong time

Sensor
failure

or

Sugar
computation

error

Timer
failure

Pump
signals

incorrect

or

Insulin
computation

incorrect

Delivery
system
failure

Arithmetic
error

or

Algorithm
error

Arithmetic
error

or

Algorithm
error

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 82

• Three possible conditions can lead to the delivery of
incorrect doses of insulin

• Incorrect measurement of blood sugar level
• Failure of the delivery system
• The dose was delivered at the wrong time

• By analysis of the fault tree, the root causes of these
hazards related to software are:

• Algorithm error
• Arithmetic error

Fault tree analysis

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 83

• The aim of this process is to identify dependability
requirements that specify how the risks should be
managed and ensure that accidents/incidents do not
arise.

• Risk reduction strategies
• Hazard avoidance;
• Hazard detection and removal;
• Damage limitation

Risk reduction

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 84

• Arithmetic error
• A computation causes the value of a variable to overflow

or underflow;
• Maybe include an exception handler for each type of

arithmetic error.
• Algorithmic error

• Compare the dose to be delivered with the previous dose
or safe maximum doses. Reduce the dose if too high.

Insulin pump - software risks

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 85

SR1: The system shall not deliver a single dose of insulin greater than a specified
maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin greater than a
specified maximum daily dose for a system user.
SR3: The system shall include a hardware diagnostic facility executed at least four
times per hour.

SR4: The system shall include an exception handler for all exceptions identified in
Table 3.

SR5: The audible alarm shall be sounded when any hardware or software anomaly
is discovered and a diagnostic message, as defined in Table 4, shall be displayed.

SR6: In the event of an alarm, insulin delivery shall be suspended until the user has
reset the system and cleared the alarm.

Examples of Safety Requirements

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 86

• Accept the risk: for low likelihood or low impact
risks, or where the cost of mitigation is too high

• Transfer the risk: push the risk outside the system
boundary

• Mitigate the risk: introduce active countermeasures
• Reduce likelihood of failure; reduce severity of impact;

change ors to ands!
• Avoid the risk: redesign so that risk cannot occur

Risk Response Strategies

03/13/24 EECS 481 (W24) – Requirements, Validation & Risk 87

Questions?
•HW4 is due today!

.. and consider starting to work on HW5 and HW6a.

