THIS STATEMENT
\S AL\E.

IN FACT, LYWG.

Debugging as
Hypothesis Testing

THAT'S NOT THE POINT
OF TUE PARADOY,
AND YOU KNOW IT.

SORRY,
NO TIME FOR
NON-EMPI\RICAL
CHIT-CHAT. T

WHY DOES BECAUSE ITS COLD. ICE WANTS [1S THAT | LOOK (T UP AND

\CE FLOAT ? TO GET WARM, SO \T QOES

TO THE TOP OF L\QUIDS N

ORDER TO BE NEARER TO
THE SUN.

Smfc-comicS.com

The Story So Far ...

*Quality assurance is critical to software engineering.
« Static and dynamic QA approaches are common

eDefect reports are tracked and assigned to developers for
resolution

*Modern software is so huge that simple debugging
approaches do not work

*How should we intelligently and scalably approach
debugging?

One-Slide Summary

*Delta debugging is an automated debugging approach that
fiﬂcds a minimal interesting subset of a given set. It is very
efficient.

*Delta debugging is based on divide-and-conquer and relies
heavilz on critical assumptions (monotonicity,
unambiguity, and consistency).

*It can be used to find which code changes cause a bug, to
minimize failure-inducing inputs, and even to find harmful
thread schedules.

Debugging Case Study

*Consider this deployment pipeline: Git Server to Jenkins to
GlassFish application server

* You have a known-valid test input (NetBeans git commit) that leads
to an incorrect WAR file

 What would you do to determine which pipeline stage has the bug?

. Git Server Jenkins - - .
I\.IetBeans. —> G.'t o ——» Post-Receive +——»{ Remote Access ——» Je.nkms — lenkins —» GIassF!sh
Git Commit Git Push ek AP Build Job Deploy Job WAR file

environment parameter
ie. ‘development’

Real Life Motivation

*Mozilla developers had a large number of open bug reports
in the queue that were not even simplified

*The Mozilla engineers “faced imminent doom”

*Netscape product management sent out the Mozilla
Bug-A-Thon call for volunteers: people who would help
simplify bug reports.

e Simplify — turn bug reports into minimal test cases, where each part
of the input matters

https://wwwe-archive.mozilla.org/newlayout/bugathon.html

https://www-archive.mozilla.org/newlayout/bugathon.html

Minimizing a Mozilla Bug

*\We want something that can
simplify this large HTML
input to just “<SELECT>"
which causes the crash

Each character in “SELECT” is
relevant (see 20-26)

O 00 =~ N WU B WY -

[T S T I S N O T O I o e I R
S W AEA W N = O O 0 N Vs WD -0

<SELECT_NAME="priority" MULTIPLE_SIZE=7> X
<SELECT_NAME="priority" MULTIPLE_SIZE=7> v/
<SELECT,é NAME="priority" MULTIPLE SIZE=7> ¢
<SELECT_NAME="priority" MULTIPLE SIZE=7> v/
<SELECT_NAME="priority" MULTIPLE_SIZE=7> X
<SELECT, NAME="priority" MULTIPLE SIZE=7> X
<SELECT,Z NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT_NAME="priority" MULTIPLE_SIZE=7> v
<SELECT NAME="priority" MULTIPLE_SIZE=7> v/
<SELECT NAME="priority" MULTIPLE_SIZE=7> X
<SELECT NAME="priority" MULTIPLE _SIZE=7> ¢
<SELECT NAME="priority" MULTIPLE SIZE=7> v
<SELECT_NAME="priority" MULTIPLE_SIZE=7> v
<SELECT NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> X
<SELECT NAME="priority" MULTIPLE_SIZE=7> X
<SELECT, NAME="priority" MULTIPLE, SIZE=7> X
<SELECT _NAME="priority" MULTIPLE _SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT NAME="priority",K MULTIPLE, SIZE=7> v
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT _NAME="priority" MULTIPLE_SIZE=7> v
<SELECT _NAME="priority" MULTIPLE_SIZE=7> ¢
<SELECT NAME="priority" MULTIPLE SIZE=7> v
<SELECT NAME="priority" MULTIPLE SIZE=7> X

6

Often people who encounter a bug spend a lot of time

investigating which changes to the input file will make the bug
go away and which changes will not affect it.

— Richard Stallman, Using and Porting GNU CC

WE DONT UNDERSTAND HISTORY 1S THE FICTION | THATS WHY EVENTS ARE o WHAT
WHAT REALY CAUSES WE INVENT TO PERSUADE | ALWAYS REINTERPRETED | ARE Yo

EYENTS TO HAPPEN . / | |OURSELVES THAT EVENTS | WHEN VALES CHANGE. WRITING ?
i ARE KMOWARLE AND THAT | WE NEED NEW VERSIONS

LIFE HAS ORDER| OF HISTORY TO ALLOW FOR

AND DIRECTION, | QUR CURRENT PREIJUNMCES.

A REVISIONIST
AUTO BIOGRAPRY .

,/
—
-3
/
o

Delta Debugging

*Three Problems: One Common Approach
e (1) Simplifying Failure-Inducing Input
e (2) Isolating Failure-Inducing Thread Schedules
e (3) Identifying Failure-Inducing Code Changes

THIS DESIGN WILL

NEVER WORK IN
THE REAL WORLD.

|
1A/ @
li€ v
cott Adams, Inc./Dist. by ;

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

www.dilbert.com scottadams®aol.com

I CAN COME BACK LATER
IF YOU NEED TIME TO
CONCOCT ADDITIONAL

UNINFORMED

CRITICISMS.

o9 ©2008Scott Adams, Inc./Dist. by UFS, Inc.

=]
o

(1) Failure-Inducing Input

*Having a test input may not be enough

* Even if you know the suspicious code, the input may be too large to
step through

*This HTML input makes a version of Mozilla crash. Which
portion is relevant?

<td align=left valign=top>

<SELECT NAME="op.sys" MULTIPLE SIZE=7>

<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System B8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">0penBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">0OpenVMS<OPTION VALUE="0S/2">0S/2<OPTION
VALUE="0OSF/1">0SF/1<OPTION VALUE="Solaris">S0laris<OPTION VALUE="Sun0S">SunOS<OPTION VALUE="other">other</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>

<td align=left valign=top>

<SELECT NAME="bug.severity" MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>

</table>

(2) Thread Scheduling

*Multithreaded programs can be non-deterministic
 Can we find simple, bug-inducing thread schedules?

Schedule Thread A Thread B Schedule Thread A Thread B
open("” .htpasswd") open(".htpasswd")
read(...) open(" .htpasswd")
modify(...) read(...)
write(...) read(...)
close(...) modify(...)

open(".htpasswd") write(...)

gﬁmgﬁ read(...) close(...)
modify(...) modify(...)
write(...) write(...)
close(...) close(...)

v X

10

(3) Code Changes

*A new version of GDB has a Ul bug
 The old version does not have that bug

«178,000 lines of code have been modified between the two
versions

* Where is the bug?

 These days: continuous integration testing helps
e ... butdoes not totally solve this. Why?

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infemd.c
1239¢1278

< "Set arguments to give program being debugged when it is started.\n

> "Set argument list to give program being debugged when it 1s started.'n

11

What is a Difference?

*With respect to debugging, a difference is a change (in the
program configuration or state) that may lead to alternate

observations

* Difference in the input: different character or bit in the input stream

« Difference in thread schedule: difference in the time before a given
thread preemption is performed

» Difference in code: different statements or expressions in two

versions of a program
* Difference in program state: different values of internal variables

Unified Solution

* Abstract Debugging Problem:

* Find which part of something (= which input, which change, etc.)
determines the failure

* “Find the smallest subset of a given set that is still interesting”

*Divide and Conquer

* Applied to: working and failing inputs, code versions, thread
schedules, program states, etc.

13

Yesterday, My Program Worked
Today, It Does Not

v

s

Yesterday

= ven =b
. —

n changes

*\We will iteratively

 Hypothesize that a small subset is interesting
Example: change set {1,3,8} causes the bug

* Run tests to falsify that hypothesis — how?

Today

14

Delta Debugging (Interface)

*Given
* AsetC={c, ..., c }(of changes)
* A function Interesting : a (sub)set of changes — Yes or No

 We know: Interesting(C) = Yes, Interesting({}) = No

 We require: Interesting is monotonic, unambiguous and
consistent (more on these later)

*The delta debugging algorithm returns a minimal
“Interesting” subset M of C:

* [nteresting(M) = Yes
e Forall min M, Interesting(M \ {m}) = No

15

Example Use of Delta Debugging

v =2 = wie = = X
—_
Yesterday n changes Today

*C = the set of n changes

*|Interesting(X) = “Apply the changes in X to Yesterday's version and
compile. Run the result on the test.”
o If it fails, return “Yes” (X is an interesting failure-inducing change set),

e otherwise return “No” (X is too small and does not induce the failure)

Naive Approach

*\We could just try all subsets of C to find the smallest one
that is Interesting

* Problem:if |C| = N, this takes 2" time
* Recall: real-world software is huge

*\We want a polynomial-time solution

* |deally one that is more like log(N)
 Orwe'll loop “forever”

Every Da ; 1s
ety

gL 11C game

17

Algorithm Candidate

/* Precondition: Interesting({c, ... c }) = Yes */
DD({c,, ..., c }) =
if n=1then return {c_}

let P1=1c, ... c)} So far, this is just binary search!

let P2 = {cn/2+1, ., cn}
if Interesting(P1) = Yes This works if the minimal
then return DD(P1) interesting set is of size 1.

else return DD(P2)

Useful Assumptions

*Any subset of changes may be Interesting
* Not just singleton subsets of size 1 (cf. binary search)

*Interesting is Monotonic
* |nteresting(X) — Interesting(X u{c})

*Interesting is Unambiguous
* |nteresting(X) & Interesting(Y) — Interesting(X nY)

*Interesting is Consistent

* |nteresting(X) = Yes or Interesting(X) = No
* (Some formulations: Interesting(X) = Unknown)

19

Interesting(P2)

Delta Debugging Insights Yes No
= Not
. . . Q._’
Basic Binary Search 5 Yes o X
 Divide Cinto P1 and P2 *5
* If Interesting(P1) = Yes then recurse on P1 s No X X
* If Interesting(P2) = Yes then recurse on P2 =

* At most one case can apply (by Unambiguous)

*By Consistency, the only other possibility is

e (Interesting(P1) = No) and (Interesting(P2) = No)
 What happens in such a case?

Interference:
Interesting(P1) = No and Interesting(P2) = No

*By Monotonicity
* If Interesting(P1) = No and Interesting(P2) = No
 Then no subset of P1 alone or subset of P2 alone is Interesting

*So the Interesting subset must use a combination of
elements from P1 and P2

*In Delta Debugging, this is called interference
* Basic binary search does not have to contend with this issue

Interference Insight

(hardest part of this lecture?)

D1}

D2

Consider P1 P1

* Find a minimal subset D2 of P2
e Such that Interesting(P1 uD2) = Yes

Consider P2

* Find a minimal subset D1 of P1
e Such that Interesting(P2uD1) = Yes

*Then by Unambiguous

* |nteresting((P1uD2) n(P2uD1)) =
Interesting(D1u D2) is also minimal

P2

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, esred cn}) =

123456 7 8 Interesting? if n =1 then return {c }
let P1 = {C1' cn/z}
let P2 = {cn/m, s cn}
if Interesting(P UP1) = Yes
Example: Use DD to find the smallest then return DD(P, P1)
interesting subset of {1, ..., 8} if Interesting(P u P2) = Yes

then return DD(P, P2)
else return DD(PU P2, P1)
UDD(P UP1, P2)

What do you think DD will do here?
List the first step.

31

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, emssif cn}) =

123456 7 8 Interesting? if n =1 then return {c }
12 3 4 IetP1={c1,...cn/2}
A let P2 = {cn/2+1, - cn}

56738 if Interesting(P U P1) = Yes

/ then return DD(P, P1)

First Step: if Interesting(P uP2) = Yes

Partition C = {1, ..., 8} into then return DD(P, P2)

P1={1, .., 4and P2 = {5, .., 8 MO0 e,

32

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, s cn}) =

123456 7 8 Interesting? if n =1 then return {cl}
letP1={c,...c _}
1234 277 ! iz
let P2 = {cn/2+1, - cn}
567 8 ??7 if Interesting(P U P1) = Yes
T then return DD(P, P1)
if Interesting(P u P2) = Yes
Second Step: then return DD(P, P2)
Test P1 and P2 else return DD(P U P2, P1)

UDD(P U P1, P2)

33

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

1234 No

D1}

D2

567 8 No p1

Interference! Sub-Step:

Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, s cn}) =

12 3 4|5 6 7 8 Interesting? if n =1 then return {cl}
letPl1={c,...c }
1234 No ' iz
let P2 = {cn/2+1, s i cn}
56 7 8 No if Interesting(P U P1) = Yes
then return DD(P, P1)
\ if Interesting(P u P2) = Yes
' then return DD(P, P2)
Interferepcg. Sub-Step: else return DD(P U P2, P1)
Find minimal subset D1 of P1 UDD(P U P1, P2)

such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, s cn}) =

12 3 4|5 6 7 8 Interesting? if n =1 then return {c }
letPl1={c,...c }
1 2 34 No ' e
let P2 = {cn/2+1, s i cn}
56 7 8 No if Interesting(P U P1) = Yes
1 2 56 7 8 2?77 then return DD(P, P1)
\ if Interesting(P u P2) = Yes
' then return DD(P, P2)
Interferen;g. Sub-Step: else return DD(PU P2, P1)
Find minimal subset D1 of P1 UDD(P U P1, P2)

such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?

1234 No
56 7 8 No

12 56 7 8 No

™

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, s cn}) =

123 4|56 7 8 Interesting? if n =1 then return {c }
19234 NG let P1={c1,...cn/2}
let P2 = {cn/2+1, s i cn}
56 7 8 No if Interesting(P U P1) = Yes
1 2 56 7 8 No then return DD(P, P1)
if Interesting(P uP2) =Yes
34|56 7872 then return DD(P, P2)
Interference! Sub-Step: else return DD(P U P2, P1)
Find minimal subset D1 of P1 UDD(P UP1, P2)

such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {cl, s cn}) =

12 3 4|5 6 7 8 Interesting? if n =1 then return {c }
193 4 No let P1={c1,...cn/2}
let P2 = {cn/2+1, - cn}
56 7 8 No if Interesting(P U P1) = Yes
1 2 567 8 No Are we then return DD(P, P1)
if Interesting(P uP2) = Yes
4|5 6 7 8 Yes done? then return DD(P, P2)

\Interference! Sub-Step: else return DD(PU P2, P1)
Find minimal subset D1 of P1 UDD(P U P1, P2)

such that Interesting(D1 + P2)

39

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

123 4|5 6 7 8 Interesting?

1234 No
56 7 8 No
1 2 56 7 8 No

34|56 7 8 Yes
3 567 87?7

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

(9

orn U1 O U

6 7 8 Interesting?

No
6 7 8 No
6 7 8 No
6 /7 8 Yes
6 /7 8 Yes

D1 = {3}

Are we
done?

DD(P, {C1' s cn}) =

if n =1 then return {cl}

let P1 = {cl, cn/z}

let P2 = {cn/m, - cn}

if Interesting(P UP1) = Yes
then return DD(P, P1)

if Interesting(P uP2) = Yes
then return DD(P, P2)

else return DD(PU P2, P1)

UDD(P U P1, P2)

41

Example: {3,6} Is Smallest Interesting Subset
Of {11 Ry 8} DD(P, {C1' eresd Cn}) =

. if n =1 then return {c }

123 4|5 6 7 8 Interesting? etP1={c, ...c_}

1 2 34 No let P2 = {cn/m, . on3 G }

567 8 No if Interesting(P UP1) = Yes
then return DD(P, P1)

if Interesting(P u P2) = Yes
then return DD(P, P2)

else return DD(P U P2, P1)

UDD(P U P1, P2)

\ 3 ‘5678Yes

Just one half.
D1 ={3} Need second half!

42

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {C1' il cn}) =

l ; 3 4 5 Q Z § |nterestingz if n =1 then return {Cl}
1 2 3 4 NO |€tP1={C1,...Cn/2}
let P2 ={cn/2+1, s cn}
56 7 8|No

if Interesting(P UP1) = Yes
then return DD(P, P1)

if Interesting(P u P2) = Yes
then return DD(P, P2)

else return DD(P U P2, P1)

D1 = {3} UDD(P U P1, P2)

Now find D2!

43

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {C1' il cn}) =

l ; 3 4 5 Q Z § |nterestingz if n =1 then return {Cl}
1 2 3 4 NO |€tP1={C1,...Cn/2}
let P2 ={cn/2+1, s cn}
56 7 8|No

if Interesting(P UP1) = Yes
then return DD(P, P1)

if Interesting(P u P2) = Yes
then return DD(P, P2)

else return DD(P U P2, P1)

1234|156 ?? D1 = {3} UDD(P U P1, P2)

Now find D2!

44

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

DD(P, {C1' il cn}) =

1 2 3 4|5 6 7 8|Interesting? if n =1 then return {c }
1234 NG let P1={c1, cn/z}
let P2 = {cn/m, s s cn}
> 6 7 8|No if Interesting(P UP1) = Yes

then return DD(P, P1)
if Interesting(P u P2) = Yes
then return DD(P, P2)

else return DD(P U P2, P1)
12 3 4|56 Yes UDD(P UP1, P2)

What’s next?

45

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

1234561738

1234
567 8

Interesting?

No
No

1234
1234
1234

Yes
NO D1 = {3}
Ves D2 = {6}

DD(P, [cn}) =

if n =1 then return {cl}

let P1 = {cl, cn/z}

let P2 = {cn/m, s o cn}

if Interesting(P UP1) = Yes
then return DD(P, P1)

if Interesting(P u P2) = Yes
then return DD(P, P2)

else return DD(PU P2, P1)

UDD(P UP1, P2)

46

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

123456 7 8 Interesting?

12 34 No D1 = {3}
56 7 8 No D2 = {6

Final Answer:
3 5678 Yes How to combine D1, D2?

1 2 3 4 6 Yes

47

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8} DD(P, {c, ...,c }) =
123456 7 8 Interesting? if n =1 then return {c }
12 314 No letP1=1{c,...c .}
56 7 8 No let P2={cn/2+1,...,cn}
1 9 56 7 8 No if Interesting(P UP1) = Yes
34567 8 Yes then return DD(P, P1)
D1 = {3} if Interesting(P uP2) = Yes
3 2 6 78 Yes D2 = {6} then return DD(P, P2)
123456 Yes else return|DD(P U P2, P1)
12345 No | Final Answer: UDD(P U P1, P2)
1234 6 Yes | {3, 6}

48

Delta Debugging Algorithm

Initially, empty set; but during run, not empty
Initially, entire set; but during run, a subset

DD(P; {C1; Ry’ Cn}) = Precondition: P is not interesting, but P U {Cy e, cn} is
if n =1 then return {C1}

et P1 = {cl, cn/z}

et P2 = {cn/2+1, . cn}

if Interesting(PU P1) = Yes then: return DD(P, P1)
if Interesting(P U P2) = Yes then: return DD(P, P2)
else: return DD(PuP2, P1)uDD(Pu P1, P2)

Postcondition: minimal subset of {Cy e, cn} such that
“P U this subset” is interesting

Algorithmic Complexity

*|f a single change induces the failure
DD is logarithmic: 2 * log |C]
e Why?

Otherwise, DD is linear

 Assuming constant time per “Interesting” check
e |s this realistic?

*|f Interesting can return Unknown
« DD is quadratic: |C|%+ 3|C]
 If all tests are Unknown except last one (unlikely)

Questioning Assumptions

(assumptions are restated here for convenience)

*All three key assumptions are questionable

*Interesting is Monotonic
* Interesting(X) — Interesting(Xu {c})

*Interesting is Unambiguous
* Interesting(X) & Interesting(Y) — Interesting(XnNY)

*Interesting is Consistent

* Interesting(X) = Yes or Interesting(X) = No
* (Some formulations: Interesting(X) = Unknown)

52

Not Monotonic

Y PN : e lindkarvra
\/

;. \ A N \J

What if the world is not monotonic?
* For example, Interesting({1,2}) = Yes but Interesting({1,2,3,4}) = No

*Then DD may still find an Interesting subset
 Thought questions: Will it be minimal? How long will it take?

Ambiguity

(a 481 student found this counterexample!)

*\What if the world is ambiguous?
*Then DD (as presented here) may not find an Interesting subset

*Hint: trace DD on Interesting({2, 8}) = yes, Interesting({3, 6}) = yes,
but Interesting({2, 8} n {3, 6}) = no.
DD returns {2,6} :-(. —

m/legal/sla/

@ (" SHOW_DETAILS_TITLE | ~ NOT_NOW_TITLE) (INSTALL_TITLE)

Inconsistency

e What if the world is not consistent?

*Example: we are minimizing changes to a program to find
patches that make it crash

Some subsets may not build or run!

* Integration Failure: a change may depend on earlier changes

e Construction failure: some subsets may yield programs with parse
errors or type checking errors (cf. HW3!)

* Execution failure: program executes strangely or does not terminate,
test outcome is unresolved

Delta Debugging Thread Schedules

*DejaVu tool by IBM, CHESS by Microsoft, etc.
*The thread schedule becomes part of the input

*\We can control when the scheduler preempts one thread

replay

Differences in Thread Scheduling

eStartingpoint M ... th..
e Passi
: .mg run)
e Failingrum B s
Differences (for t1)
 T1 occurs in passing run at time 254 -
* T1occursinfailingrunattime278 ®9----""""

~.
-~
-
-~
~
-~
e
-~

Differences in Thread Scheduling

*\We can build new test cases by mixing the two schedules to
isolate the relevant differences

!
\4
—_— P
v X

58

Does It Work?

*Test #205 of SPEC JVM98 Java Test Suite

 Multi-threaded raytracer program
 Simple race condition

* Generate random schedules to find a passing schedule and a failing
schedule (to get started)

*Differences between passing and failing

e 3,842,577,240 differences (!)
* Each difference moves a thread switch time by +1 or -1

DD Isolates One Difference
After 50 Probes (< 30 minutes)

Delta Debugging Log

fe+14 ¢ T
3 CPASS '"e——
cfail sensnns
o
1e+13 |2
3 i“-
= -
o Sus
8
fe+12 | :
g
Maany :
T
a1 1]
1e+11 | pe— 1 1 1 1 | 1 1 I
0 5 10 15 20 25 30 35 40 45 50

Tests executed

60

Pin-Pointing The Failure

*The failure occurs iff thread switch #33 occurs at yield point
59,772,127 (line 91) instead of 59,772,126 (line 82) — race
on which variable?

25 public class Scene { ...

44 private static int ScenesLoaded = 0;

45 (more methods...)

81 private

82 int LoadScene(String filename) {

84 int OldScenesLoaded = ScenesLoaded;

85 (more initializations. ..) should be

91 infile = new DataInputStream(...); “Critical

92 (more code...) Section”

130 ScenesLoaded = OldSceneslLoaded + 1; .

131 System.out.println("" + but is not
ScenesLoaded + " scenes loaded.");

132

134 }
135

733 3}

61

Minimizing Input

*GCC version 2.95.2 on x86/Linux
with certain optimizations crashed
on a legitimate C program

 Note: GCC crashes, not the program!

double mult(double z[], int n)

{

int

}

311 rive b

int j;

for (j= 0; j< m; j++) {
i= i+j+i;
z[i]=z[1]1*(z[0]+0);

}

return z(n];

copy(double to[], double from[], int count)

int n= (count+7)/8;
switch (count%8) do {

case 0: xto++ = xfrom++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = xfrom++;
case 4: *to++ = *from++;
case 3: *to++ = xfrom++;
case 2: *to++ = *from++;
case 1: xto++ = xfrom++;

} while (-—n > 0);
return (int)mult(to,2);

int main(int argc, char *argv[])

|

double x[20], y[20];
double *px= Xx;

while (px < x + 20)
px++ = (px-x)(20+1.0);

return copy(y,x,20);

Figure 4: A program that crashes GCC-2.95.2.

62

Delta Debugging to the Rescue

*With 731 probes (< 60 seconds), minimized to:

t(double z[], int n) {
int 1, j;

for (;;j++) { i=i+j+1; z[i]=z[i]*(z[@]+0);

return z[n]; }

*GCC has many options
 Run DD again to find which #float-store

—fforce-mem

are relevant fuo-inline
—fkeep-static-consts
—fstrength-reduce
—fese-skip-blocks
—fgcse
—fschedule-insns2
—fcaller-saves

—fmove-all-movables

—fstrict-aliasing

https://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/hdd.pdf

}

—fno-default-inline
—fforce-addr
—finline-functions
—fno-function-cse
—fthread-jumps
—frerun-cse-after-loop
—fexpensive-optimizations
—ffunction-sections
—funroll-loops
—freduce-all-givs

—fno-defer-pop
—fomit-frame-pointer
—fkeep-inline-functions
—ffast-math
—fese-follow-jumps
—frerun-loop-opt
—fschedule-insns
—fdata-sections
—funroll-all-loops
—fno-peephole

Go Try It Out: Eclipse Integration

Automated Debugging in Eclipse

We realized two Eclipse plug-ins that automatically determine why your program fails:

¢ in the input and
e in the program history.

These plug-ins integrate with JUnit tests: As soon as a test fails, they automatically determine the
failure cause. You don't even have to press a button—just wait for the diagnosis.

DDinput: Failure-Inducing Input
Find out which part of the input causes your program to fail:

The program fails when the input contains <SELECT=.

This plug-in applies Delta Debugging to program inputs, as described in Simplifying and Isolating
Failure-Inducing Input.

Available for download.

DDchange: Failure-Inducing Changes

Find out which change causes your program to fail:
The change in Line 45 makes the program fail.

This plug-in applies Delta Debugging to program changes, as described in Yesterday, my program
worked. Today, it does not. Why?.

Available for download.

Questions?

*HW4 is due March 17

*.. and consider starting
on HWS5 (DD)!

u)/ 1}(?‘/ b

om % NOVEMBER

“ie) il e

- l&;\ -

65

