Fault Localization and Profiling

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

The Story So Far ...

e Quality assurance is critical to software engineering.
e Static and dynamic QA approaches are common

e Defect reports are tracked from creation to resolution
eSome are assigned to developers for resolution (triage)

e How do we know which part of a program to change to
repair a bug or improve a program?

One-Slide Summary

e A debugger helps to detect the source of a program error by
sinlgle-stepping through the program and inspecting variable
values.

e Fault localization is the task of identifying lines implicated in a
bu|$,. Humans are better at localizing some types of bugs than
others.

e Automatic tools can help with the dynamic analyses of fault
localization and profiling.

e Care must be taken when evaluating such tools (and their
assumptions) for real-world use.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Outline

e Software Scales

e Manual Debuggers

e Human Study Results
e Automatic Tools

e Profilers

e Are Tools Helping?

A lot of code. A lot of defects.

Microsoft: 70 percent of all security bugs are memory safety issues
Percentage of memory safety issues has been hovering at 70 percent for the past 12 years

a By Catalin Cimpanu for Zero Day | February 11. 2019 -- 15:48 GMT (07:48 PST) | Topic: Security

dy the root cause trends of vulnerabilities & search for patterns

% of memory safety vs. non-memory safety CVEs by patch year

% of C(VEs

Image: Martt Miller
https://www.cve.or;
Around 70 percent of all the vulnerabilities in Microsoft products addressed through a security update each year are memory
safety issues; a Microsoft engineer revealed last week at a security conference

https://edu.chainguard.dev/software-security/cves/cve-intro/

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

https://www.cve.org/
https://edu.chainguard.dev/software-security/cves/cve-intro/

Which of these is photoshopped?

OO0

w Tawree

R

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Bucket-Wheel Excavators

e Heaviest land vehicles

e ~14,000 tons
e (avg USA car: 2 tons)

e Mobile strip-mining

2

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 7

Modern Software Is Huge

e “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. | mean, you may think it's a
long way down the road to the chemist, but that's just
peanuts to space.” — Douglas Adams

e\Who cares?

e Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases
e Techniques from the 1980s or your habits from classes

low many lines of code? Guess??
- iIPhone app

- Facebook

. Chrome/Firefox

- Microsoft Office

. Car Software

- Space Shuttle

Example Programs: < IMLOC

* libpng: 85,000

= hundred

\

jfreechart:

300,000

thousand

X 100’ 000 simpleiPhone game app
Unix "1};:9

Win32/Simile virus

average iPhone app

Pacemaker

Photoshop V119

web oo

Quake 3‘éngine

2D Video game system

Space Shuttle

amillion lines of code

03/04/2024

EECS 481 (W24) - Fault Localization & Profiling

APP

MACHINE

10

Example Programs: 1-10 MLOC

1993

HD DVD Player on XBox

(just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover

Martian ground vehicle probe

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windows NT 3.5

1993

Firefox

latest version

upp
estu
TR
IIIIIIIm 4

03/04/2024 EECS 481 (W24)

- Fault Localization & Profiling

11

Example Programs: 25 - 50 MLOC

2013

25 Microsoft Office 2001
Windows 2000

Microsoft Office for Mac
2006

Symbian

mobie operating system

Windows 7
2009

Windows XP
2001

Microsoft Office 2013

ﬂ T crea T T e N2

ﬂll“'lm\\

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

12

Example Programs: 50 — 100 MLOC

Large Hadron tC§ollider

tal code

Windows Vista

2007

Microsoft Visual Studio 2012

Facebook
(including backend code)

US Army Future Combat System

fast battlefield network system (aborted)

Debian 5 0 codebase
e, ope € O] stem
Mac OS X “Tiger”
v10.4
— c o 1 10 20 30 40 50 80, 70, w-
arsoftware [NNNNNNER nANENENREN aRERRERNEN AR RN NN RN SRR NAN AN IR RN aC RN

03/04/2024

EECS 481 (W24) - Fault Localization & Profiling

13

Example Programs: 0.1 — 2.0BLOC

Mouse*
Total DNA basepairs in genome

Car software
average modern high-end car

APPARENT size of

healthcare.gov website
reported figure, 2013

\WE4 R} D Google Is 2 Billion Lines of Code—And It's All in One Place

BUSINESS CULTURE SCIENCE

I CADE METZ BUSINESS 0S.16.15 10:00 AM

SINRE—— GOOGLE 1S 2 BILLION LINES OF
g CODE—ANDIT'S ALLIN ONE
o PLACE

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

14

Humans Are Poor At Comprehending Large Scales

e|ibpng 85 000

e Google 2 000 000 000

e |magine that there is a bug somewhere, anywhere, in libpng
eYou can find it in a minute!

e At that same rate, it will take you more than two weeks to
find it in all of Google

e A one-hour bug on libpng is three years on google
e Unless we do things differently ...

Program debugging

Program debugging is the process of finding and fixing
errors or bugs in a software program.

Debugging can help improve the quality, performance, and
reliability of the software.

Debugging can be done manually or with the help of tools
and techniques.

Debugging is a dynamic analysis technique that involves
examining and modifying the state of a program during its
execution and finding and fixing errors or bugs.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 16

Program debugging (Cont’d)

Debugging can be done manually, using tools such as print
statements, breakpoints, or watchpoints, or automatically, using

tools such as debuggers, profilers, or monitors.

Debugging can also be done at different levels of abstraction, such
as source code, assembly code, or machine code.

Debugging can help developers understand the logic and flow of
their program, identify the causes and effects of errors, and validate
the correctness and performance of their program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 17

Steps of debugging

ldentifying the problem: This involves determining what the expected
behavior of the program is and what the actual behavior is. This can be done
by running test cases, checking error messages, or reproducing the problem.
Locating the source of the problem: This involves finding where in the code
the problem occurs and what causes it. This can be done by using
breakpoints, tracing, logging, or inspecting variables.

Correcting the problem: This involves modifying the code to eliminate the
error and ensure it does not happen again. This can be done by editing,
refactoring, or testing the code.

Validating the solution: This involves checking if the problem is solved and if
there are any side effects or new errors. This can be done by running test
cases, reviewing the code, or monitoring the performance.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 18

Some popular debugging tools

Visual Studio Debugger: A tool for debugging C#, C++, Visual Basic, and
other languages in Visual Studio.

Chrome Debugger: A tool for debugging JavaScript, HTML, CSS, and other
web technologies in Chrome DevTools. It allows you to pause execution,
inspect elements, modify values, and more.

ExifTool: A tool for extracting metadata from various types of files, such
as images, documents, or archives.

PE Studio: A tool for statically examining many aspects of a suspicious
Windows executable file, such as imported and exported function names,
strings, hashes, packers, and suspicious API calls.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 19

Size of a program & its debugging

The size of a program can affect the number and quality of test
cases that are needed to cover the program and reveal the bugs.
Larger programs may require more test cases to achieve a high
code coverage and expose faulty behaviors. However, generating
and executing more test cases can also be more time-consuming
and resource-intensive.

Moreover, the quality of the test cases can also influence the
debugging process, as test cases that are more effective in
distinguishing between correct and incorrect program behaviors
can help narrow down the search space for the bugs.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 20

Size of a program & its debugging (Cont'd)

The size of a program can affect the complexity and
diversity of bugs that may occur in the program.

Larger programs may have more complex and diverse bugs
that are harder to locate and fix. For example, larger
programs may have more dependencies, interactions, and
concurrency issues that can cause bugs that are difficult to
reproduce or isolate.

Moreover, larger programs may have more types of bugs,
such as syntactic, semantic, logical, or design bugs, that
may require different debugging techniques or tools.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 21

Size of a program & its debugging (Cont'd)

The size of a program can affect the performance and accuracy of
debugging techniques or tools that are used to locate the bugs.
Larger programs may pose more challenges for debugging
techniques or tools, as they may have more statements, variables,
branches, Ioogs, or functions that need to be analyzed and ranked
according to their suspiciousness of being faulty.

Moreover, larger programs may have more noise or irrelevant
information that can affect the accuracy of debugging techniques or
tools. For example, some debugging techniques or tools may rely
on statistical models, machine learning algorithms, or information
retrieval methods that can be affected by the size of the program
and the data.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 22

What is a Debugger?

 “A software tool that is used to detect the source of

program or script errors, by performing step-by-step
execution of application code and viewing the content of

code variables.”
- Microsoft Developer Network

Debuggers

e Can operate on source code or assembly code
e Inspect the values of registers, memory

e Key Features (we’ll explain all of them)

e Attach to process

e Single-stepping

e Breakpoints

e Conditional Breakpoints
e Watchpoints

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

24

Signals in Debugging

e A signal in debugging is a way of communicating between a
running program and a debugger or another process.

e A signal can indicate that the program has encountered an
error, an exception, an interruption, or a termination request.

e A signal can also be used to control the execution of the
program, such as pausing, resuming, or stopping it.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 25

Signals & Debugging (Cont’d)

. Signals are used in debugging to control the
execution of a program and to inspect its state.

. Signals are messages that are sent to a process by
the operating system, another process, or itself.

. Some signals indicate errors, such as segmentation
faults or illegal instructions, while others indicate
events, such as interrupts or alarms.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

26

How does a debugger use signals?

. A debugger can use signals to stop, resume, or modify the
behavior of a program. For example, a debugger can send a
SIGINT signal to interrupt a program, a SIGCONT signal to
continue a program, or a SIGTRAP signal to set a breakpoint in
a program.

. A debugger can also register a signal handler for a program,
which is a function that is executed when a signal is received.

. A signal handler can perform some actions, such as printing
the values of variables, modifying the memory or registers, or
terminating the program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 27

Signals

e A signal is a notification sent to a process about an event:
e User pressed Ctrl-C (or did kill %pid)

e Or asked the Windows Task Manager to terminate it Ny

Violets are blue

[) Except|ons (d'V'de by Zerol nu” pointer) Asynchronous operations

are great

e From the OS (SIGPIPE)

eYou can install a signal handler — a procedure that will be
executed when the signal occurs.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

28

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

Signal Example int global = 11;

int my_handler() {
printf("In signal handler, global = %d\n",

e What does this program print? |G raEE
b

void main() {
int * pointer = NULL;

global = 33;
* pointer = 0;

global = 55;

printf("Outside, global = %d\n", global);

\\\\\

Zey o othing!

on & Profiling

Attaching A Debugger

e Requires operating system support

eThere is a special system call that allows one process to act
as a debugger for a target

e What are the security concerns?

e Once this is done, the debugger can basically “catch signals”
delivered to the target

e This isn’t exactly what happens, but it’s a good explanation ...

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 30

#include <stdio.h>
#include <signal.h>

Building a Debugger

int global = 11;

e\We can then get breakpoints and
interactive debugging
e Attach to target void main() {
e Set up signal handler global = 33:
e Add in exception-causing instructions
e |nspect globals, etc. global = 55;

printf("Outside, global = %d\n",
}

Breakpoints

- A breakpoint is a point in a software program where the
execution of the program is paused or stopped for
debugging purposes.

- A breakpoint can help examine the state of the program,
such as the values of variables, the call stack, or the
memory usage, at a specific moment.

- A breakpoint can also help control the flow of the program,

such as stepping through the code, resuming the execution,
or terminating the program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 32

Breakpoints (Cont’d)

. A debugger can use special registers, such as the program
counter (PC) and the hardware breakpoint (HBP), to
implement breakpoints.

The PC register holds the address of the next instruction to
be executed, and the HBP register holds the address of a
breakpoint location.

. If the PC value equals the HBP register value, it means that
the program has reached the breakpoint, and the debugger
can signal an exception and invoke the signal handler.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 33

Advanced Breakpoints

¢ Optimization: hardware breakpoints

e Special registers (a few of them): if PC value = HBP register value, signal an
exception

e Faster than software, works on ROMs, only a limited number of breakpoints,
etc.

¢ Feature: conditional breakpoint: “break at instruction X if some_variable =
some_value”

¢ As before, but signal handler checks to see if some_variable = some_value

* If so, present interactive debugging prompt
e |f not, return to program immediately
e s this fast or slow?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 34

Single-Stepping

. Single-stepping is a debugging technique that allows a
programmer or tester to execute a program one
instruction at a time and inspect its state after each step.

Single-stepping can help to find and fix errors, understand
complex behaviors, or test specific scenarios.

Single-stepping can be done using tools such as
debuggers, which provide features such as step-over and
step-into to control the execution flow of the program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 35

Single-Stepping (Cont’d)

e Debuggers also allow you to advance through code one
instruction at a time

eTo implement this, put a breakpoint at the first instruction
(= at program start)

eThe “single step” or “next” interactive command is equal
to:

e Put a breakpoint at the next instruction
e Resume execution

e (No, really.)

Watchpoints

* A waichpoint is a type of debugging tool that allows monitoring
of the value or the memory location of a variable or an
expression in a software program.

* A watchpoint can trigger a breakpoint or an action when the
variable or the expression is accessed or modified in a certain
way.

* Watchpoints can help find and fix errors or bugs in codes.

https://interrupt.memfault.com/blog/cortex-m-watchpoints
https://www.techopedia.com/definition/28718/watchpoint-sap

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 37

https://interrupt.memfault.com/blog/cortex-m-watchpoints
https://www.techopedia.com/definition/28718/watchpoint-sap

Watchpoints (Cont’d)

eYou want to know when a variable changes

e A watchpoint is like a breakpoint, but it stops execution
after any instruction changes the value at location L

e How could we implement this?

D\D YOU WATCH THE MOVIE DID YOU WATCH THE DID YOU WATCH ANY
ON TV LAST N\GHT T GAME THEN? TV LAST NIGHT ? THEN WHAT DID
- i NOU WATCH ?
// :
’@ - o

Vs

03/04/202

Watchpoint Implementation

e Software Watchpoints

e Put a breakpoint at every instruction (ouch!)

e Check the current value of L against a stored value

e |f different, give interactive debugging prompt

e If not, set next breakpoint and continue (single-step)

e Hardware Watchpoints

e Special register holds L: if the value at address L ever changes, the
CPU raises an exception

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

39

Psychology: Reactions

e You are invited to participate in a group discussion of “personal
problems”. Because of the sensitive nature of the discussion, it
takes place over an intercom. During the discussion, you hear:

e “l-er-um-I think I-I need-er-if-if could-er-er-somebody er-er-er-er-er-er-er
give me a little-er-give me a little help here because-er-I-er-I’'m-er-erh-h-
having a-a-a real problem-er-right now and I-er-if somebody could help me
out it would-it would-er-er s-s-sure be-sure be good . . . because-there-er-
er-a cause l-er-I-uh-I've got a-a one of the-er-sei er-er-things coming on
and-and-and | could really-er-use some help so if somebody would-er-give
me a little h-help-uh-er-er-er-er-er c-could somebody-er-er-help-er-uh-uh-
uh (choking sounds). ... I’'m gonna die-er-er-I'm . . . gonna die-er-help-er-
er-seizure-er-[chokes, then quiet].”

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Psychology: Reactions

eThe more people in the
discussion, the longer it takes
anyone to take action

o
(o]

e Gender (of you or others) had no
effect

Percentage Helping
I
e}

N
O

120 160 200 240

Seconds from Beginning of Fit
03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Bystander Effect

e “It is our impression that nonintervening subjects not
decided not to respond. Rather they were still in a state of
indecision and conflict concerning whether to respond or
not. The emotional behavior of these nonresponding
subjects was a sign of their continuing conflict ...”

e Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

e [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Bystander Effect

* [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968. |

e Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Fault Localization

- Fault localization is the process of identifying the
locations of faults in a program that cause

failures or errors.
- Fault localization is an important and challenging

task in software debugging, as it can help
developers find and fix bugs more efficiently and

effectively.

03/04/2024 EECS481 (W24) - Fault Local ization & Profiling

Fault Localization (Cont'd)

* Fault localization is the task of identifying source code regions
implicated in a bug
e “This regression test is failing. Which lines should we change to fix
things?”
e The answer is not unique: there are often many places to fix a
bug

e Example: check for null at caller or callee.
e Debugging includes fault localization

e The answer may take the form of a list (e.g., of lines) ranked by
suspiciousness

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 46

Program Spectrum-Based Method

. A program spectrum represents the execution
behavior of a program or a component.

. It consists of a set of entities, such as statements,
branches, or functions, and a set of spectra, which
are vectors of binary values that indicate whether
each entity was executed or not during a test.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Advanced Fault Localization Methods

Slice-Based Techniques: Program slicing is a technique to abstract a
program into a reduced form by deleting irrelevant parts such that the
resulting slice will still behave the same as the original program
concerning certain specifications.

Statistics-Based Techniques: A statistical debugging technique that can
isolate bugs in programs with instrumented predicates at certain points.

Program State-Based Techniques: A program state consists of variables
and their values at a particular point during program execution, which
can be a good indicator for locating program bugs.

https://www.researchgate.net/publication/291951202 A Survey on Software Fault Localization

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 48

https://www.researchgate.net/publication/291951202_A_Survey_on_Software_Fault_Localization

Advanced Fault Localization Methods (Cont'd)

Machine Learning-Based Techniques: In the context of fault localization, the
problem at hand can be identified as trying to learn or deduce the location of a
fault based on input data such as statement coverage and the execution result
(success or failure) of each test case.

Data Mining-Based Techniques: The software fault localization problem can be
abstracted to a data mining problem — for example, we wish to identify the pattern
of statement execution that leads to failure.

Model-Based Techniques: It is assumed that a correct model of each program being
diagnosed is available. That is, these models can serve as the oracles of the
corresponding programs. Differences between the behaviors of a model and the
actual observed behaviors of the program are used to help find bugs in the
program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 49

Human Fault Localization

e OK, so humans have debuggers
e Are humans any good at debugging?
e Not all bugs are equally easy to find

e Not all programs are equally easy to debug

YOU DID WHAT? WHERE AN ARMY NO, REALL

OF HOSTILE ALIENS
| HIT THIS BUG | |5 NOW GATHERING
THAT RIPPED TO SWEEP THROUGH

TO A PARALLEL OUR. PLANET.
UNIVERSE...

REALLY.

it

03/04/2024

Bug Bash by Hans Bjordahl

YEAH, | DIDN'T
KNOW C# COULD
|\ DO THAT E!THE‘R/.

Copyright 2005 Hans Bjordahl

http:/ /www.bugbash.nets

50

Find The Bug
(Towers of Hanoi)

e Over 53% of participants
(seniors) could find the bug in

about 3 minutes

e Note: conditional branches,

recursive calls, rich

comments, variable names

[Z. Fry et al.: A Human Study of Fault Localization Accuracy. International Conference on
Software Maintenance (ICSM) 2010]

18

/***

Performs the initial call to moveTower

to solve the puzzle. Moves the disks

from tower 1 to tower 3 using tower 2.
**/
public void solve () {

moveTower (totalDisks, 1, 3, 2);

}

/***
Moves the specified number of disks
from one tower to another by moving a
subtower of n-1 disks out of the way,
moving one disk, then moving the
subtower back. Base case of 1 disk.
**/
private void moveTower (int numDisks,
int start, int end, int temp)
if (numDisks == 1)
moveTower (numDisks-1, temp, end, start);
else {
moveTower (numDisks-1, start, temp, end);
moveOneDisk (start, end);
moveTower (numDisks-1, temp, end, start);
}
}

/***
Prints instructions to move one disk
from the specified start tower to the
specified end tower.
***/
private void moveOneDisk (int start, int end)
System.out .println ("Move one disk from "

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 4+ start + " to " + andy: 51

35

}

https://web.eecs.umich.edu/~movaghar/A_human_study_of_fault_localization_accuracy.pdf

Find The Bug 2

/** Move a single disk from src to dest. x/
2 public static wvoid hanoil (int src, int dest) {
System.out.println(src + " => " + dest);

}

/** Move two disks from src to dest,
making use of a spare peg. */

. 1 I public static void hanoi2 (int src,
e Note: shorter, simpler gL eyl SR
H £ H 9 hanoil (src, dest);
identifiers, simpler control § Eisrememute ety Tarer s i et

B W

e Only 33% could locate the bug

10
flow, not as abstract e Sl
13 /%% Move three disks from src to dest,
14 making use of a spare peg. x*/
15 public static void hanoi3 (int src,
16 int dest, int spare) {
17 hanoi2 (src, spare, dest);
18 System.out.println(src + " => " + dest);
19 hanoi2 (spare, dest, src);
20

}

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 52

Human Study

e Participants (n=65, half with >4 years of experience) were
shown snippets of textbook
e Defects seeded based on 100 consecutive bug fixes from the Mozilla
bug repository

e Double experimental control

e (Quicksort in Textbook A vs. Textbook B has the same complexity
(differs only in style)

e Bubblesort in Textbook A vs. AVL Tree in Textbook A differ in
complexity (have same presentation style)

What Do You Think?

e Rank these: which of these bugs is easiest for humans to
find?

e Extra Assignment FvA AL USUMA L TALED. 1D
L. sole aim is the advancement
* Missing Statement of transportation safety. It
e Extra Conditional does not assign fault or de-
termine eivil or eriminal li-

e Calling Wrong Method ability.
e Extra Statement So far, they have deter:

mined that the crash oc-
curred when the plane
struck the ground, but
they're unsure what speed
the aircraft was going at the

PROBABLY BAD NEWS.COM @)

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

Adeunooe uoiiezijeso| yneq

Human fault localization accuracy as a function of defect type

55

EECS 481 (W24) - Fault Localization & Profiling

03/04/2024

Tool Support for Fault Localization

e A spectrum-based fault localization tool uses a dynamic
analysis to rank suspicious statements implicated in a fault
by comparing the statements covered on failing tests to the
statements covered on passing tests

e Basic idea:

e Instrument the program for coverage (put print statements
everywhere)

e Run separately on normal inputs and bug-inducing inputs
e Compute the set difference!

https://people.cs.umass.edu/~rjust/publ/fault localization effectiveness icse 2017.pdf
N eb.ee nich.edu/~movagha aluation Fault Localization 2005.pdf

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 56

https://people.cs.umass.edu/~rjust/publ/fault_localization_effectiveness_icse_2017.pdf
https://web.eecs.umich.edu/~movaghar/Evaluation%20Fault%20Localization%202005.pdf

Tarantula

. Tarantula is a fault localization technique that uses code coverage
information and test results to rank the statements in a program by

their likelihood of containing a fault.

. Tarantula assigns a suspiciousness score to each statement based on
the ratio of passing and failing test cases that execute it. The higher
the suspiciousness score, the more likely the statement is to be
faulty.

Tarantula also uses a color scheme to visualize the suspiciousness
of statements, ranging from red (most suspicious) to green (least
suspicious).

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 57

Tarantula

. Tarantula is one of the spectrum-based fault localization
techniques, which uses statistical analysis of program
spectra to identify fault locations.

. Tarantula was proposed by Jones and Harrold in 2005 and
has been compared with other fault localization
techniques in several empirical studies.

. Tarantula has been shown to be effective and efficient in
locating faults in various types of programs, such as C,
Java, and Solidity.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 58

Insight: Print-Statement Debugging

e |f you do not execute X but you do observe the bug, X
cannot be related to that bug

e|f Y is primarily executed when you observe the bug, it is
more likely to be implicated than Z which is primarily
executed when you do not observe the bug

e Suspiciousness Ranking
susp(s) = (fail(s)/total_fail) / (fail(s)/total fail + pass(s)/total pass)

[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.]

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 59

Fault Localization Ranking

Test Cases 2

mid() { olqlgln e 2

int x,y,z,m; | | nlw|n|oa] 3| E
1: read("Enter 3 numbers:",x,y,z); 000 e e 5 7
2: m = z; ® 00 0 o e 5 7
3: if (y<2z) 000 e e 5 7
4: if (x<y) (2K) ® ® 0633
5: m=y; o 00 |13
6: else if (x<z) o ® ® 0712
7: m=y; // *%x bug *** [@ 0831
8: else L A 00 |13
9: if (x>y) e 0.0 |13
10: m=y; o 0.0 |13
11: else if (x>z) [00 |13
12: m = x; 00 |13
13: print("Middle number is:",m); 00 0 e e ;5 7

} Pass/Fail Status P| P| P| P| P| F

susp(s) = (fail(s)/total_fail) / (fail(s)/total_fail + pass(s)/total_pass)

Software Profiling

« Software profiling is the process of measuring and
analyzing the performance of a software program.

« Software profiling can help you identify and fix errors
or bugs that affect the speed, memory usage, CPU
load, or resource consumption of your program.

« Software profiling can also help you optimize your
code and improve the quality and reliability of your
software.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 61

Software Profiling (Cont’d)

Profiling is the runtime analysis of metrics such as execution speed and
memory usage, which is typically aimed at program optimization. However,
it can also be leveraged for debugging activities, such as the following:

. Detecting unexpected execution frequencies of different functions;
. ldentifying memory leaks or code that performs unexpectedly poorly;
. Examining the side effects of lazy evaluation.

Tools that use profiling for program debugging include GNU’s gprof and the
Eclipse plugin TPTP.

https://sourceware.org/binutils/docs/gprof/index.html|

https://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/tptpProfilingArticle.html

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 62

https://sourceware.org/binutils/docs/gprof/index.html
https://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/tptpProfilingArticle.html

Profiler

e A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

e A flat profile computes the average call times for
functions but does not break times down based on
context

e A call-graph profile computes call times for functions
and also the call-chains involved

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 63

Event-Based Profiling

e Interpreted languages provide special hooks for profiling
e Java: JVM-Profile Interface, JVM API

e Python: sys.set_profile() module
e Ruby: profile.rb, etc.

eYou register a function that will get called whenever the
target program calls a method, loads a class, allocates an

object, etc. C ALL
e

e cf. “signal handler”

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling ! F }

64

JVM Profiling Interface

*\VM notifies profiler agent of various events (heap
allocation, thread start, method invocation, etc.)

e Profiler agent issues control commands to the JVM and
communicates with a GUI

r-- - "-"--"-"-""-""-"""-"""-"""-"""-"""-"""-"""-""—-—-—-"—- - - - —-—-=-—-= ="

r—-———=—"/""

JVMPI |
Java virtual events | . i
A Profiler nt |+ o Profiler
. : = i front-end
controls |

Java virtual machine process Profiler process

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 65

[Pie I have eaten

[Pie 1 have not
vet eaten

Statistical Profiling

eYou can arrange for the operating system to send you a
signal (just like before) every X seconds (see alarm(2))

e |n the signal handler you determine the value of the target
program counter
e And append it to a growing list file
e Thisis sampling

e Later, you use debug information from the compiler to map
the PC values to procedure names

e Sum up to get amount of time in each procedure

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 66

Sampling Analysis

e Advantages

e Simple and cheap — the instrumentation is unlikely to disturb the
program

e No big slowdown

e Disadvantages

e Can completely miss periodic behavior (e.g., you sample every k seconds
but do a network send at times 0.5 + nk seconds)

e High error rate: if a value is n times the sampling period, the expected
error in it is sqrt(n) sampling periods

e Read the gprof paper

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

67

Real-World Tool Utility

e Human study of 34 graduate students

e Given Tarantula (as a friendly plugin for Eclipse) and asked to
complete two debugging tasks

e Tetris: square block rotation bug
e NanoXML: parsing library exception

e Hypotheses:

e Tools will help us debug faster
e Tools help more with harder problems

[Parnin and Orso. Are Automated Debugging Techniques Actually Helping Programmers?
ISSTA '"11.]
https://web.ee Jmich.ed

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 69

https://web.eecs.umich.edu/~movaghar/Automated%20Debugging%20helpful%202011.pdf

Results

e Experts Are Faster When Using Tools

e Qver all participants, tools did not help

e Top-third of participants went from 14m:28s to 8:51 with tool
support (for Tetris, p < 0.05)

eTools Did Not Help With Harder Tasks

e Changes In Rank Did Not Matter

e For the faulty statement, (Rank) 7 - 35 in Tetris, 83 - 16 in
NanoXML.

e Why is this so crucial here?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

70

Explanations

e “Based on this data, we have determined that programmers
do not visit each statement in a linear fashion.”

e “If the faulty nature of a statement were apparent to the
developers by just looking at it, tool usage should stop as
soon as they get to that statement in the list.”

e “participants, on average, spent another ten minutes using the tool
after they first examined the faulty statement. That is, participants
spent (or wasted) on average 61% of their time continuing to inspect
statements with the tool after they had already encountered the
fault.”

Implications

eYou are a Software Engineering manager

e Making a process decision: do we purchase, train on, and
deploy Tarantula?

e Tarantula claims: this tool will correctly rank buggy
statements near the top of the list

e Thisis almost a red herring!
e You must examine the “end-to-end” performance

¢So, fault localization tools are worthless?

Nuanced Example

e Suppose you have three devs: A, Band C
e Expert, Medium, Novice

e Tarantula makes A, the expert, 39% faster
e But makes everything 13% slower (training, overhead, whatever)

e |f everything is equal, net gain = 0 (as in study)

e But suppose A is 25x faster than C (productivity later)

e A=25,B=13, C=1 - in this world your team, overall, is 8.7% faster
with Tarantula

Questions?

eHW 3 is due today!
eHW 4 is due next Wednesday!

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling

74

