
Fault Localization and Profiling

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 1

The Story So Far …

•Quality assurance is critical to software engineering.
• Static and dynamic QA approaches are common

•Defect reports are tracked from creation to resolution

•Some are assigned to developers for resolution (triage)

•How do we know which part of a program to change to
repair a bug or improve a program?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 2

One-Slide Summary

•A debugger helps to detect the source of a program error by
single-stepping through the program and inspecting variable
values.

•Fault localization is the task of identifying lines implicated in a
bug. Humans are better at localizing some types of bugs than
others.

•Automatic tools can help with the dynamic analyses of fault
localization and profiling.

•Care must be taken when evaluating such tools (and their
assumptions) for real-world use.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 3

Outline

•Software Scales

•Manual Debuggers

•Human Study Results

•Automatic Tools

•Profilers

•Are Tools Helping?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 4

A lot of code. A lot of defects.

https://www.cve.org/

https://edu.chainguard.dev/software-security/cves/cve-intro/

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 5

https://www.cve.org/
https://edu.chainguard.dev/software-security/cves/cve-intro/

Which of these is photoshopped?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 6

Bucket-Wheel Excavators

•Heaviest land vehicles
• ~14,000 tons
• (avg USA car: 2 tons)

• Mobile strip-mining

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 7

Modern Software Is Huge

•“Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's a
long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

•Who cares?
• Techniques developed based on smaller code bases simply do not

apply or scale to larger code bases
• Techniques from the 1980s or your habits from classes

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 8

• How many lines of code? Guess??
• iPhone app
• Facebook
• Chrome/Firefox
• Microsoft Office
• Car Software
• Space Shuttle

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 9

Example Programs: < 1MLOC

• libpng: 85,000 jfreechart: 300,000

x 100,000

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 10

Example Programs: 1-10 MLOC

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 11

Example Programs: 25 – 50 MLOC

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 12

Example Programs: 50 – 100 MLOC

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 13

Example Programs: 0.1 – 2.0BLOC

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 14

Humans Are Poor At Comprehending Large Scales

•libpng 85 000
•Google 2 000 000 000
•Imagine that there is a bug somewhere, anywhere, in libpng
•You can find it in a minute!
•At that same rate, it will take you more than two weeks to

find it in all of Google
• A one-hour bug on libpng is three years on google
• Unless we do things differently …

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 15

Program debugging
• Program debugging is the process of finding and fixing

errors or bugs in a software program.
• Debugging can help improve the quality, performance, and

reliability of the software.
• Debugging can be done manually or with the help of tools

and techniques.
• Debugging is a dynamic analysis technique that involves

examining and modifying the state of a program during its
execution and finding and fixing errors or bugs.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 16

Program debugging (Cont’d)

• Debugging can be done manually, using tools such as print
statements, breakpoints, or watchpoints, or automatically, using
tools such as debuggers, profilers, or monitors.

• Debugging can also be done at different levels of abstraction, such
as source code, assembly code, or machine code.

• Debugging can help developers understand the logic and flow of
their program, identify the causes and effects of errors, and validate
the correctness and performance of their program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 17

Steps of debugging
• Identifying the problem: This involves determining what the expected

behavior of the program is and what the actual behavior is. This can be done
by running test cases, checking error messages, or reproducing the problem.

• Locating the source of the problem: This involves finding where in the code
the problem occurs and what causes it. This can be done by using
breakpoints, tracing, logging, or inspecting variables.

• Correcting the problem: This involves modifying the code to eliminate the
error and ensure it does not happen again. This can be done by editing,
refactoring, or testing the code.

• Validating the solution: This involves checking if the problem is solved and if
there are any side effects or new errors. This can be done by running test
cases, reviewing the code, or monitoring the performance.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 18

Some popular debugging tools
• Visual Studio Debugger: A tool for debugging C#, C++, Visual Basic, and

other languages in Visual Studio.
• Chrome Debugger: A tool for debugging JavaScript, HTML, CSS, and other

web technologies in Chrome DevTools. It allows you to pause execution,
inspect elements, modify values, and more.

• ExifTool: A tool for extracting metadata from various types of files, such
as images, documents, or archives.

• PE Studio: A tool for statically examining many aspects of a suspicious
Windows executable file, such as imported and exported function names,
strings, hashes, packers, and suspicious API calls.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 19

Size of a program & its debugging
• The size of a program can affect the number and quality of test

cases that are needed to cover the program and reveal the bugs.
• Larger programs may require more test cases to achieve a high

code coverage and expose faulty behaviors. However, generating
and executing more test cases can also be more time-consuming
and resource-intensive.

• Moreover, the quality of the test cases can also influence the
debugging process, as test cases that are more effective in
distinguishing between correct and incorrect program behaviors
can help narrow down the search space for the bugs.
03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 20

Size of a program & its debugging (Cont’d)
• The size of a program can affect the complexity and

diversity of bugs that may occur in the program.
• Larger programs may have more complex and diverse bugs

that are harder to locate and fix. For example, larger
programs may have more dependencies, interactions, and
concurrency issues that can cause bugs that are difficult to
reproduce or isolate.

• Moreover, larger programs may have more types of bugs,
such as syntactic, semantic, logical, or design bugs, that
may require different debugging techniques or tools.
03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 21

Size of a program & its debugging (Cont’d)
• The size of a program can affect the performance and accuracy of

debugging techniques or tools that are used to locate the bugs.
• Larger programs may pose more challenges for debugging

techniques or tools, as they may have more statements, variables,
branches, loops, or functions that need to be analyzed and ranked
according to their suspiciousness of being faulty.

• Moreover, larger programs may have more noise or irrelevant
information that can affect the accuracy of debugging techniques or
tools. For example, some debugging techniques or tools may rely
on statistical models, machine learning algorithms, or information
retrieval methods that can be affected by the size of the program
and the data.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 22

What is a Debugger?

• “A software tool that is used to detect the source of
program or script errors, by performing step-by-step
execution of application code and viewing the content of
code variables.”

- Microsoft Developer Network

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 23

Debuggers

•Can operate on source code or assembly code
•Inspect the values of registers, memory
•Key Features (we’ll explain all of them)
• Attach to process
• Single-stepping
• Breakpoints
• Conditional Breakpoints
• Watchpoints

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 24

Signals in Debugging

•A signal in debugging is a way of communicating between a
running program and a debugger or another process.

•A signal can indicate that the program has encountered an
error, an exception, an interruption, or a termination request.

•A signal can also be used to control the execution of the
program, such as pausing, resuming, or stopping it.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 25

Signals & Debugging (Cont’d)

• Signals are used in debugging to control the
execution of a program and to inspect its state.

• Signals are messages that are sent to a process by
the operating system, another process, or itself.

• Some signals indicate errors, such as segmentation
faults or illegal instructions, while others indicate
events, such as interrupts or alarms.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 26

How does a debugger use signals?

• A debugger can use signals to stop, resume, or modify the
behavior of a program. For example, a debugger can send a
SIGINT signal to interrupt a program, a SIGCONT signal to
continue a program, or a SIGTRAP signal to set a breakpoint in
a program.

• A debugger can also register a signal handler for a program,
which is a function that is executed when a signal is received.

• A signal handler can perform some actions, such as printing
the values of variables, modifying the memory or registers, or
terminating the program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 27

Signals

•A signal is a notification sent to a process about an event:
• User pressed Ctrl-C (or did kill %pid)
• Or asked the Windows Task Manager to terminate it

• Exceptions (divide by zero, null pointer)
• From the OS (SIGPIPE)

•You can install a signal handler – a procedure that will be
executed when the signal occurs.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 28

Signal Example

•What does this program print?

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

int global = 11;

int my_handler() {
printf("In signal handler, global = %d\n",

global);
exit(1);

}

void main() {
int * pointer = NULL;

signal(SIGSEGV, my_handler) ;

global = 33;

* pointer = 0;

global = 55;

printf("Outside, global = %d\n", global);
}

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 29

Attaching A Debugger

•Requires operating system support
•There is a special system call that allows one process to act

as a debugger for a target
• What are the security concerns?

•Once this is done, the debugger can basically “catch signals”
delivered to the target
• This isn’t exactly what happens, but it’s a good explanation …

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 30

Building a Debugger

•We can then get breakpoints and
interactive debugging
• Attach to target
• Set up signal handler
• Add in exception-causing instructions
• Inspect globals, etc.

#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
printf(“debugger prompt: \n”);
// debugger code goes here!

}

void main() {
signal(SIGSEGV, debugger_signal_handler) ;

global = 33;

BREAKPOINT;

global = 55;

printf("Outside, global = %d\n", global);
}

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 31

Breakpoints
• A breakpoint is a point in a software program where the

execution of the program is paused or stopped for
debugging purposes.

• A breakpoint can help examine the state of the program,
such as the values of variables, the call stack, or the
memory usage, at a specific moment.

• A breakpoint can also help control the flow of the program,
such as stepping through the code, resuming the execution,
or terminating the program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 32

Breakpoints (Cont’d)
• A debugger can use special registers, such as the program

counter (PC) and the hardware breakpoint (HBP), to
implement breakpoints.

• The PC register holds the address of the next instruction to
be executed, and the HBP register holds the address of a
breakpoint location.

• If the PC value equals the HBP register value, it means that
the program has reached the breakpoint, and the debugger
can signal an exception and invoke the signal handler.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 33

Advanced Breakpoints
• Optimization: hardware breakpoints
• Special registers (a few of them): if PC value = HBP register value, signal an

exception
• Faster than software, works on ROMs, only a limited number of breakpoints,

etc.
• Feature: conditional breakpoint: “break at instruction X if some_variable =

some_value”
• As before, but signal handler checks to see if some_variable = some_value
• If so, present interactive debugging prompt
• If not, return to program immediately
• Is this fast or slow?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 34

Single-Stepping

• Single-stepping is a debugging technique that allows a
programmer or tester to execute a program one
instruction at a time and inspect its state after each step.

• Single-stepping can help to find and fix errors, understand
complex behaviors, or test specific scenarios.

• Single-stepping can be done using tools such as
debuggers, which provide features such as step-over and
step-into to control the execution flow of the program.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 35

Single-Stepping (Cont’d)

•Debuggers also allow you to advance through code one
instruction at a time

•To implement this, put a breakpoint at the first instruction
(= at program start)

•The “single step” or “next” interactive command is equal
to:
• Put a breakpoint at the next instruction
• Resume execution
• (No, really.)

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 36

Watchpoints

• A watchpoint is a type of debugging tool that allows monitoring
of the value or the memory location of a variable or an
expression in a software program.

• A watchpoint can trigger a breakpoint or an action when the
variable or the expression is accessed or modified in a certain
way.

• Watchpoints can help find and fix errors or bugs in codes.

https://interrupt.memfault.com/blog/cortex-m-watchpoints
https://www.techopedia.com/definition/28718/watchpoint-sap

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 37

https://interrupt.memfault.com/blog/cortex-m-watchpoints
https://www.techopedia.com/definition/28718/watchpoint-sap

Watchpoints (Cont’d)

•You want to know when a variable changes
•A watchpoint is like a breakpoint, but it stops execution

after any instruction changes the value at location L
•How could we implement this?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 38

Watchpoint Implementation

•Software Watchpoints
• Put a breakpoint at every instruction (ouch!)
• Check the current value of L against a stored value
• If different, give interactive debugging prompt
• If not, set next breakpoint and continue (single-step)

•Hardware Watchpoints
• Special register holds L: if the value at address L ever changes, the

CPU raises an exception

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 39

Psychology: Reactions

•You are invited to participate in a group discussion of “personal
problems”. Because of the sensitive nature of the discussion, it
takes place over an intercom. During the discussion, you hear:
• “I-er-um-I think I-I need-er-if-if could-er-er-somebody er-er-er-er-er-er-er

give me a little-er-give me a little help here because-er-I-er-I’m-er-erh-h-
having a-a-a real problem-er-right now and I-er-if somebody could help me
out it would-it would-er-er s-s-sure be-sure be good . . . because-there-er-
er-a cause I-er-I-uh-I’ve got a-a one of the-er-sei er-er-things coming on
and-and-and I could really-er-use some help so if somebody would-er-give
me a little h-help-uh-er-er-er-er-er c-could somebody-er-er-help-er-uh-uh-
uh (choking sounds). . . . I’m gonna die-er-er-I’m . . . gonna die-er-help-er-
er-seizure-er-[chokes, then quiet].”

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 41

Psychology: Reactions

•The more people in the
discussion, the longer it takes
anyone to take action

•Gender (of you or others) had no
effect

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 42

Bystander Effect

•“It is our impression that nonintervening subjects not
decided not to respond. Rather they were still in a state of
indecision and conflict concerning whether to respond or
not. The emotional behavior of these nonresponding
subjects was a sign of their continuing conflict ...”

•Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

• [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 43

Bystander Effect

• [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

•Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 44

Fault Localization

• Fault localization is the process of identifying the
locations of faults in a program that cause
failures or errors.

• Fault localization is an important and challenging
task in software debugging, as it can help
developers find and fix bugs more efficiently and
effectively.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 45

Fault Localization (Cont’d)
•Fault localization is the task of identifying source code regions

implicated in a bug
• “This regression test is failing. Which lines should we change to fix

things?”
•The answer is not unique: there are often many places to fix a

bug
• Example: check for null at caller or callee.
•Debugging includes fault localization
•The answer may take the form of a list (e.g., of lines) ranked by

suspiciousness

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 46

Program Spectrum-Based Method

• A program spectrum represents the execution
behavior of a program or a component.

• It consists of a set of entities, such as statements,
branches, or functions, and a set of spectra, which
are vectors of binary values that indicate whether
each entity was executed or not during a test.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 47

Advanced Fault Localization Methods

Slice-Based Techniques: Program slicing is a technique to abstract a
program into a reduced form by deleting irrelevant parts such that the
resulting slice will still behave the same as the original program
concerning certain specifications.
Statistics-Based Techniques: A statistical debugging technique that can
isolate bugs in programs with instrumented predicates at certain points.
Program State-Based Techniques: A program state consists of variables
and their values at a particular point during program execution, which
can be a good indicator for locating program bugs.
https://www.researchgate.net/publication/291951202_A_Survey_on_Software_Fault_Localization

•

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 48

https://www.researchgate.net/publication/291951202_A_Survey_on_Software_Fault_Localization

Advanced Fault Localization Methods (Cont’d)
Machine Learning-Based Techniques: In the context of fault localization, the
problem at hand can be identified as trying to learn or deduce the location of a
fault based on input data such as statement coverage and the execution result
(success or failure) of each test case.
Data Mining-Based Techniques: The software fault localization problem can be
abstracted to a data mining problem – for example, we wish to identify the pattern
of statement execution that leads to failure.
Model-Based Techniques: It is assumed that a correct model of each program being
diagnosed is available. That is, these models can serve as the oracles of the
corresponding programs. Differences between the behaviors of a model and the
actual observed behaviors of the program are used to help find bugs in the
program.

•

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 49

Human Fault Localization

• OK, so humans have debuggers

• Are humans any good at debugging?

• Not all bugs are equally easy to find

• Not all programs are equally easy to debug

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 50

Find The Bug
(Towers of Hanoi)
•Over 53% of participants

(seniors) could find the bug in
about 3 minutes

•Note: conditional branches,
recursive calls, rich
comments, variable names

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 51

https://web.eecs.umich.edu/~movaghar/A_human_study_of_fault_localization_accuracy.pdf
[Z. Fry et al.: A Human Study of Fault Localization Accuracy. International Conference on
Software Maintenance (ICSM) 2010]

https://web.eecs.umich.edu/~movaghar/A_human_study_of_fault_localization_accuracy.pdf

Find The Bug 2

•Only 33% could locate the bug

•Note: shorter, simpler
identifiers, simpler control
flow, not as abstract

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 52

Human Study

•Participants (n=65, half with >4 years of experience) were
shown snippets of textbook
• Defects seeded based on 100 consecutive bug fixes from the Mozilla

bug repository

•Double experimental control
• Quicksort in Textbook A vs. Textbook B has the same complexity

(differs only in style)
• Bubblesort in Textbook A vs. AVL Tree in Textbook A differ in

complexity (have same presentation style)

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 53

What Do You Think?

•Rank these: which of these bugs is easiest for humans to
find?
• Extra Assignment
• Missing Statement
• Extra Conditional
• Calling Wrong Method
• Extra Statement

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 54

Human fault localization accuracy as a function of defect type

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 55

average time) were removed. Ultimately, we collected usable
data from 65 participants attempting to localize bugs in 30
code segments each, a dataset of 1830 human judgments.

TABLE II
PARTICIPANT SUBSETS AND AVERAGE ACCURACIES. THE COMPLETE

HUMAN STUDY INVOLVED n = 65 PARTICIPANTS.

Subset Average Number of
Accuracy Participants

All 46.3% 65
Accuracy > 40% 55.2% 46
Experience > 4 years 51.5% 34
Experience � 4 years 49.9% 51
Experience = 4 years 46.7% 17
Experience < 4 years 33.4% 14
Baseline: Guess Longest Line 6.3% -
Baseline: Guess Randomly <5.0% -

Table II presents the average accuracies of several subsets in
addition to some relevant baselines. The “Experience” measure
is self-reported and includes college years. Given a search
space of 20 lines as described in Section IV, guessing a
random line for each code excerpt yields a baseline of at
most 5% accuracy. A naı̈ve approach of guessing the longest
line for each excerpt yields only slightly higher accuracy. The
“Experience = 4 years” row includes students from a 400-
level CS class at the University of Virginia, and represents
competent programmers entering the workforce within a year.

V. EXPERIMENTAL RESULTS

This section details the results of the human study in terms
of a number of statistical analyses and models. We have
identified several subsets of the overall participant pool for
the purpose of making distinctions based on experience and
quality of data. As Table II shows, the average accuracy
between participants with four years of experience and par-
ticipants with less than four years of experience is 40%. We
often restrict attention to those participants with at least 40%
accuracy; it is a natural cutoff that intuitively corresponds to
entry-level industrial expertise. By contrast, the fourth-year
average accuracy of 46.7% actually excludes about half of
the forth-year students. While we present results for several
subsets of the overall participant set, we focus mainly on this
“more accurate” subset in an attempt to generalize the results
to at least entry level industrial programmers and to discount
participants that did not put forth sufficient effort to mimic the
actual fault localization process.

A. Bug Type as Related to Fault Localization
We hypothesize that the type of the seeded fault contributes

to the ease with which a human can find it. Figure 3 presents
an empirical evaluation of fault localization accuracy as a
function of defect type for our human study data. The error
bars represent one standard deviation. For example, when
presented with textbook code seeded with a “wrong type” error
in a 20-line window, humans were able to identify the line
containing the error in only 40% of instances.

Fig. 3. Human fault localization accuracy as a function of defect type.
Data set reflects 46 participants who achieved over 40% accuracy. Error
bars represent one standard deviation. A higher bar indicates that human
subjects were more accurate at localizing the given type of fault, ignoring
the surrounding code context.

The faults listed in Figure 3 represent our expanded in-
terpretation of Knight and Ammann’s basic taxonomy. Faults
can be characterized as omissions, erroneous inclusion, or
incorrect choice of constant, variable, conditional, or method
call. Additionally, “no error” served as a control.

We also wish to identify the differences between faults
that account for differences in localization accuracy. Figure 3
shows that certain faults were found easily while other faults
were more difficult, if not impossible, to find in our study. The
fault type that was hardest to localize involved the inclusion of
an extra conditional. We found that participants attempting to
find this type of bug failed to do so in all cases, but generally
reported a line within 3 lines of the actual fault site. In one
localization task, such a bug was seeded in an if-statement
that was followed immediately by a variable reassignment and
the increment of a counter. We hypothesize that participants
overlooked the conditional statement and assumed the bug
occurred in the imperative statements that explicitly changed
the program state. Thus it would appear that programmers
are less accurate at debugging strongly imperative code; we
return to this issue formally in Section V-C where a high ratio
of variable assignments to constants is shown to be a strong
predictor of low accuracy. Comparatively, bugs involving
an extraneous statement were found most often. We found
that even the less-experienced, less-accurate participants often
localized bugs of this type.

From these results we conclude that certain types of bugs
are intrinsically easier to localize based on their nature and
recognizability, even across varying levels of programmer
ability and varying code contexts.

B. Modeling Fault Localization Accuracy
Having established a strong relationship between the type of

defect and human fault localization accuracy, we now train and
evaluate a model of human fault localization accuracy using
only contextual features. For this model we include Surface
and Syntax, Control Flow, and Abstraction features, but not

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 02,2024 at 02:14:10 UTC from IEEE Xplore. Restrictions apply.

Fa
ul

t l
oc

al
iza

tio
n

ac
cu

ra
cy

Tool Support for Fault Localization
•A spectrum-based fault localization tool uses a dynamic

analysis to rank suspicious statements implicated in a fault
by comparing the statements covered on failing tests to the
statements covered on passing tests

•Basic idea:
• Instrument the program for coverage (put print statements

everywhere)
• Run separately on normal inputs and bug-inducing inputs
• Compute the set difference!
https://people.cs.umass.edu/~rjust/publ/fault_localization_effectiveness_icse_2017.pdf
https://web.eecs.umich.edu/~movaghar/Evaluation Fault Localization 2005.pdf

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 56

https://people.cs.umass.edu/~rjust/publ/fault_localization_effectiveness_icse_2017.pdf
https://web.eecs.umich.edu/~movaghar/Evaluation%20Fault%20Localization%202005.pdf

Tarantula

• Tarantula is a fault localization technique that uses code coverage
information and test results to rank the statements in a program by
their likelihood of containing a fault.

• Tarantula assigns a suspiciousness score to each statement based on
the ratio of passing and failing test cases that execute it. The higher
the suspiciousness score, the more likely the statement is to be
faulty.

• Tarantula also uses a color scheme to visualize the suspiciousness
of statements, ranging from red (most suspicious) to green (least
suspicious).

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 57

Tarantula

• Tarantula is one of the spectrum-based fault localization
techniques, which uses statistical analysis of program
spectra to identify fault locations.

• Tarantula was proposed by Jones and Harrold in 2005 and
has been compared with other fault localization
techniques in several empirical studies.

• Tarantula has been shown to be effective and efficient in
locating faults in various types of programs, such as C,
Java, and Solidity.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 58

Insight: Print-Statement Debugging
•If you do not execute X but you do observe the bug, X

cannot be related to that bug

•If Y is primarily executed when you observe the bug, it is
more likely to be implicated than Z which is primarily
executed when you do not observe the bug

•Suspiciousness Ranking
susp(s) = (fail(s)/total_fail) / (fail(s)/total_fail + pass(s)/total_pass)

[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.]

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 59

Fault Localization Ranking

susp(s) = (fail(s)/total_fail) / (fail(s)/total_fail + pass(s)/total_pass)

 int x,y,z,m;
 mid() {

P P P P F
3,

3,
5

1,
2,

3
3,

2,
1

5,
5,

5
5,

3,
4

2,
1,

3

 1: read("Enter 3 numbers:",x,y,z);
 2: m = z;
 3: if (y<z)
 4: if (x<y)
 5: m = y;
 6: else if (x<z)
 7: m = y; // *** bug ***
 8: else
 9: if (x>y)
 10: m = y;
 11: else if (x>z)
 12: m = x;
 13: print("Middle number is:",m);
 } Pass/Fail Status

Test Cases

P

0.5
0.5
0.63

0.5

0.0
0.71
0.83
0.0
0.0
0.0
0.0
0.0
0.5

su
sp

ic
io

us
ne

ss

ra
nk

7
7
7
3
13
2
1
13
13
13
13
13
7

Figure 1: Example of Tarantula technique.

With these simple modifications, we define the suspicious-
ness of a coverage entity e with the following equation:

suspiciousness(e) = 1 − hue(e) =

=

failed(e)
totalfailed

passed(e)
totalpassed

+ failed(e)
totalfailed

(2)

Using the suspiciousness score, we sort the coverage en-
tities of the program under test. The set of entities that
have the highest suspiciousness value is the set of entities
to be considered first by the programmer when looking for
the fault. If, after examining these statements, the fault
is not found, the remaining statements should be examined
in the sorted order of the decreasing suspiciousness values.
This specifies a ranking of entities in the program. For eval-
uation purposes, each set of entities at the same ranking
level is given a rank number equal to the greatest number
of statements that would need to be examined if the fault
were the last statement in that rank to be examined. For
example, if the initial set of entities is ten statements, then
every statement in that set is considered to have a rank of
10.

To illustrate how the Tarantula technique works, we pro-
vide a simple example program, mid(), and test suite, given
in Figure 1. Program mid() takes three integers as input and
outputs the median value. The program contains a fault on
line 7—this line should read “m = x;”. To the right of each
line of code is a set of six test cases: their input is shown
at the top of each column, their coverage is shown by the
black dots, and their pass/fail status is shown at the bottom
of the columns. To the right of the test case columns are
two columns labeled “suspiciousness” and “rank.” The sus-
piciousness column shows the suspiciousness score that the
technique computes for each statement. The ranking column
shows the maximum number of statements that would have
to be examined if that statement were the last statement

of that particular suspiciousness level chosen for examina-
tion. The ranking is ordered on the suspiciousness, from the
greatest score to the least score.

Consider statement 1, which is executed by all six test
cases containing both passing and failing test cases. The
Tarantula technique assigns statement 1 a suspiciousness
score of 0.5 because one failed test case executes it out of a
total of one failing test case in the test suite (giving a ratio
of 1), and five passed test cases execute it out of a total of
five passing test cases in the test suite (giving a ratio of 1).
Using the suspiciousness equation specified in Equation 2,
we get 1/(1 + 1), or 0.5. When Tarantula orders the state-
ments according to suspiciousness, statement 7 is the only
statement in the initial set of statements for the programmer
to inspect. If the fault were not at line 7, she would continue
her search by looking at the statements at the next ranks.
There are three statements that have higher suspiciousness
values than statement 1. However, because there are four
statements that have a suspiciousness value of 0.5, Taran-
tula assigns every statement with that suspiciousness value
a rank of 7 (3 statements examined before, and a maximum
of 4 more to get to statement 1). Note that the faulty state-
ment 7 is ranked first—this means that programmer would
find the fault at the first statement that she examined.

2.2 Set Union and Set Intersection
Several researchers have used coverage based information

for fault localization. Agrawal and colleagues present a tech-
nique that computes the set difference of the statements cov-
ered by two test cases—one passing and one failing [1]. A
set of statements is obtained by removing the statements
executed by the passed test case from the set of statements
executed by the failed test case. This resulting set of state-
ments is then used as the initial set of suspicious statements
when searching for faults.

Pan and colleagues present a set of dynamic-slice-based
heuristics that use set algebra of test cases’ dynamic slices

275

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 60

Software Profiling

• Software profiling is the process of measuring and
analyzing the performance of a software program.

• Software profiling can help you identify and fix errors
or bugs that affect the speed, memory usage, CPU
load, or resource consumption of your program.

• Software profiling can also help you optimize your
code and improve the quality and reliability of your
software.

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 61

Software Profiling (Cont’d)
Profiling is the runtime analysis of metrics such as execution speed and
memory usage, which is typically aimed at program optimization. However,
it can also be leveraged for debugging activities, such as the following:
• Detecting unexpected execution frequencies of different functions;
• Identifying memory leaks or code that performs unexpectedly poorly;
• Examining the side effects of lazy evaluation.
Tools that use profiling for program debugging include GNU’s gprof and the
Eclipse plugin TPTP.
https://sourceware.org/binutils/docs/gprof/index.html

https://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/tptpProfilingArticle.html

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 62

https://sourceware.org/binutils/docs/gprof/index.html
https://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/tptpProfilingArticle.html

Profiler

•A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
• A flat profile computes the average call times for

functions but does not break times down based on
context

• A call-graph profile computes call times for functions
and also the call-chains involved

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 63

Event-Based Profiling

•Interpreted languages provide special hooks for profiling
• Java: JVM-Profile Interface, JVM API
• Python: sys.set_profile() module
• Ruby: profile.rb, etc.

•You register a function that will get called whenever the
target program calls a method, loads a class, allocates an
object, etc.
• cf. “signal handler”

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 64

JVM Profiling Interface
•VM notifies profiler agent of various events (heap

allocation, thread start, method invocation, etc.)
•Profiler agent issues control commands to the JVM and

communicates with a GUI

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 65

Statistical Profiling

•You can arrange for the operating system to send you a
signal (just like before) every X seconds (see alarm(2))

•In the signal handler you determine the value of the target
program counter
• And append it to a growing list file
• This is sampling

•Later, you use debug information from the compiler to map
the PC values to procedure names
• Sum up to get amount of time in each procedure

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 66

Sampling Analysis

•Advantages
• Simple and cheap – the instrumentation is unlikely to disturb the

program
• No big slowdown

•Disadvantages
• Can completely miss periodic behavior (e.g., you sample every k seconds

but do a network send at times 0.5 + nk seconds)
• High error rate: if a value is n times the sampling period, the expected

error in it is sqrt(n) sampling periods

•Read the gprof paper
03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 67

Real-World Tool Utility
•Human study of 34 graduate students

•Given Tarantula (as a friendly plugin for Eclipse) and asked to
complete two debugging tasks
• Tetris: square block rotation bug
• NanoXML: parsing library exception

•Hypotheses:
• Tools will help us debug faster
• Tools help more with harder problems

[Parnin and Orso. Are Automated Debugging Techniques Actually Helping Programmers?
ISSTA '11.]
https://web.eecs.umich.edu/~movaghar/Automated Debugging helpful 2011.pdf

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 69

https://web.eecs.umich.edu/~movaghar/Automated%20Debugging%20helpful%202011.pdf

Results

•Experts Are Faster When Using Tools
• Over all participants, tools did not help
• Top-third of participants went from 14m:28s to 8:51 with tool

support (for Tetris, p < 0.05)

•Tools Did Not Help With Harder Tasks

•Changes In Rank Did Not Matter
• For the faulty statement, (Rank) 7 → 35 in Tetris, 83 → 16 in

NanoXML.
• Why is this so crucial here?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 70

Explanations

•“Based on this data, we have determined that programmers
do not visit each statement in a linear fashion.”

•“If the faulty nature of a statement were apparent to the
developers by just looking at it, tool usage should stop as
soon as they get to that statement in the list.”
• “participants, on average, spent another ten minutes using the tool

after they first examined the faulty statement. That is, participants
spent (or wasted) on average 61% of their time continuing to inspect
statements with the tool after they had already encountered the
fault.”

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 71

Implications

•You are a Software Engineering manager

•Making a process decision: do we purchase, train on, and
deploy Tarantula?

•Tarantula claims: this tool will correctly rank buggy
statements near the top of the list
• This is almost a red herring!
• You must examine the “end-to-end” performance

•So, fault localization tools are worthless?

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 72

Nuanced Example

•Suppose you have three devs: A, B and C
• Expert, Medium, Novice

•Tarantula makes A, the expert, 39% faster
• But makes everything 13% slower (training, overhead, whatever)

•If everything is equal, net gain = 0 (as in study)

•But suppose A is 25x faster than C (productivity later)
• A=25, B=13, C=1 → in this world your team, overall, is 8.7% faster

with Tarantula

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 73

Questions?

•HW 3 is due today!
•HW 4 is due next Wednesday!

03/04/2024 EECS 481 (W24) - Fault Localization & Profiling 74

