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Design and Validation
A design is a process of getting a (more detailed) realization from a 
given specification.

 An implementation can be viewed as the most detailed realization. 
https://web.eecs.umich.edu/~movaghar/Taxanomy-Dependable-Computing-2004.pdf

Specification

Realization1
Realization2

Realization3

Realization4

Implementation

A Multi-Level Design

and  Validation
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• Design is a process of getting a 
(more detailed) realization from a 
given (higher-level) specification.

• The design of a complex system 
may happen on many levels.

• The implementation may be 
viewed as the lowest level of the 
design.
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• Validation is a process of 
ensuring that a realization
satisfies its specification. 

• Validation is a process of 
ensuring that a design is correct.

• Validation is mainly used in 
system design and development.
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Validation Methods
Validation has three main 
methods: 

• Verification 
• Evaluation
• Testing
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Verification

• Verification is a formal 
mathematical method to 
prove that a realization
satisfies its specification.
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Evaluation

• Evaluation is a method 
for finding how well a 
system behaves.
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Testing

• Testing is a method of 
proving that a 
realization does not 
satisfy its specification.

04/01/2024 Introduction to Model Checking 9



Integrated Validation Methods

• Testing, Verification,
and Evaluation are
usually complementary.
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Methods for Evaluation

n Measurement
n Analytical Modeling
n Simulation Modeling
n Hybrid Modeling
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So, why not test?

Testing only shows the 
presence of bugs, not their 
absence!
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Methods for Testing
• Unit Testing: Validates that individual components 

or units of the software work correctly.
• Integration Testing: Ensures that different modules 

or services used by your application work well 
together.

• Functional Testing: Checks the software against the 
functional requirements/specifications.

• System Testing: Verifies that the complete and 
integrated software system meets the specified 
requirements.

Introduction to Model Checking04/01/2024
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Methods for Testing (Cont’d) 

• Stress Testing: Determines the robustness of 
software by testing beyond the limits of normal 
operation.

• Performance Testing: Checks if the software 
performs well under their expected workload.

• Usability Testing: Evaluate the user-friendliness and 
ease of use of the software.

• Security Testing: Identifies vulnerabilities within the 
software and ensures that the data and resources 
are protected.

Introduction to Model Checking04/01/2024
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Methods for Testing (Cont’d) 
• Acceptance Testing: Confirms that the software is 

ready for delivery by validating it against business 
requirements.

• Regression Testing: Ensures that new code 
changes do not adversely affect existing 
functionalities.

• Mutation testing: This helps ensure that the test 
cases are effective at finding potential bugs and 
that they cover the necessary aspects of the 
software's functionality. 

Introduction to Model Checking04/01/2024
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What are formal methods?

• Techniques for analyzing systems, 
based on some mathematics.

• This does not mean that the user must 
be a mathematician.

• Some of the work is done informally, 
due to complexity.

Introduction to Model Checking04/01/2024
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Formal Methods
• Mathematically-based techniques for 

describing properties of systems
• Provide framework for
• Specifying systems (and thus the notion of correctness)
• Developing systems
• Verifying correctness
• Of implementation w.r.t. the specification
• Equivalence of different implementations

• Reasoning is based on logic
• Amenable to machine analysis and manipulation
• In principle, can verify everything is true in the system!
• Given enough time, skill, and patience

Introduction to Model Checking04/01/2024
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Formal Verification

Formal verification seeks to 
establish a mathematical 
proof that a system works 
correctly. 

Introduction to Model Checking04/01/2024
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Formal Verification (Cont’d)

A formal approach provides: 
• A system model (language) to describe 

the system,
• A specification model (language) to 

describe the correctness requirement,
• An analysis technique to verify that the 

system meets its specifications. 

Introduction to Model Checking04/01/2024
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Why aren’t FMs used more?

“Formal methods can 
revolutionize 
development!” “Formal methods are difficult,

expensive, not widely useful 
and for safety-critical systems
only”
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… and one more problem

Need to know what to build (specification) before you start 
building

Unrealistic!
ÄMay need to discover what to build iteratively
ÄSoftware changes all the time

System 
engineering

Analysis
Design

Coding

Testing

Maintenance
“water-fall” model
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Formal Methods “Light”

• Partial application of formal methods
• only parts of systems are specified

• Emphasis on analysis of some properties
• security, fairness, deadlock freedom, rather than 

complete verification
• Debugging rather than assurance
• Automation

Most successful lightweight technique:
Model-Checking
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Methods of Verification

There are two major methods for 
verification:

• Deductive Method

• Model Checking
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Deductive Method
• In the deductive method, the 

problem is formulated as proving
a theorem in a mathematical 
proof system. 
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Model Checking
• In the method of model checking, 

the behavior of the system is 
checked algorithmically through 
an exhaustive search of all 
reachable states.  
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Reactive Systems
• A reactive system is a system whose role is 

to maintain an ongoing interaction with its 
environment. 

• The family of reactive systems includes
most of the classes of systems whose 
correct and dependable construction is to be 
considered to be particularly challenging, 
including concurrent and real-time systems, 
embedded and process control systems, and 
operating systems.
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Reactive Systems Properties 

Reactive systems have usually 
the following properties:
• Concurrency
• Timeliness
• High performance, dependability,

and security requirements
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System Models 
• Transition Systems (Automata)
• Process Algebras and their extensions
• Communicating Sequential Processes (CSP)
• Calculus of Communicating Systems (CCS)
• Actors
• Petri Nets and their extensions
• Deep Neural Networks (DNNs)
• Markov Decision Processes (MDPs)
• Other more recent models

https://web.eecs.umich.edu/~movaghar/pi-calculus.pdf
https://web.eecs.umich.edu/~movaghar/cspbook.pdf
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Specification Models

• Temporal Logics and their Extensions
• Linear Temporal Logic (LTL)
• Computational Tree Logic (CTL)
• CTL*
• PCTL
• PCTL*
• CSL
• HyperLTL and HyperCTL*
• Other more recent models
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Popular Tools

NuSMV
PRISM
SPIN
Dafny
Many Tools for DNNs
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Motivation for Model Checking

• Safety-critical systems
• Airplanes
• Space shuttles
• Railways

• Expensive mistakes
• Chip design
• Critical software

• Want to guarantee safe 
behavior over

• unbounded time
https://web.eecs.umich.edu/~movaghar/CACM_Article-
2008.PDF
https://web.eecs.umich.edu/~movaghar/CACM_Article-
2010.PDF

Smart vehicles
04/01/2024 Introduction to Model Checking
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Motivation for Model Checking

S. A. Seshia 13

Ariane disaster, 1996
$500 million software failure

FDIV error, 1994
$500 million

Estimated worst-case worm cost: 
> $50 billion

Bugs cost Time, Money, 
Lives, …
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Estimated worst-case worm cost: 
> $50 billion

Bugs cost Time, Money, 
Lives, …
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What is Model Checking?
• An approach for verifying the temporal 

behavior of a system
• Primarily fully-automated (“push-button”) 

techniques
• Model

• Representation of the system
• Need to decide the right level of 

granularity
• Specification

• High-level desired property of system
• Considers infinite sequences

• PSPACE-complete for FSMs

What is Model Checking?

▪ An approach for verifying the temporal behavior of a system

▪ Primarily fully-automated (“push-button”) techniques

▪ Model
▪ Representation of the system

▪ Need to decide the right level of granularity

▪ Specification
▪ High-level desired property of system

▪ Considers infinite sequences

▪ PSPACE-complete for FSMs

Model Checker

Model Spec

Counter-
Example

Proof
(optional)

04/01/2024 Introduction to Model Checking
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Model Checking
Automated formal verification for finite-state models

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬∃ à fail

Model checker
e.g. SMV, Spin

3

04/01/2024 Introduction to Model Checking
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Overview

35

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards
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Probabilistic Model Checking
Automatic verification of systems with probabilistic behaviour

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
exampleSystem

require-
ments

P<0.1 [à fail ]

0.5

0.1

0.4

Probabilistic
model checker
e.g. PRISM

36
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Why Probability?

37

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:
— Randomised back-off schemes

• CSMAprotocol, 802.11Wireless LAN
— Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)
— Randomised algorithms for anonymity, contract signing, …

04/01/2024 Introduction to Model Checking



Why Probability?  (Cont’d) 

38

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

• Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance

04/01/2024 Introduction to Model Checking



Why Probability? (Cont’d)

39

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

• To model biological processes
— reactions occurring between large numbers of molecules are

naturally modelled in a stochastic fashion
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Verifying Probabilistic Systems

40

• We are not just interested in correctness

• We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more…

• Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?
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Probabilistic Models

41

• Markov Decision Process (MDP)
— probabilistic and nondeterministic behavior
— the semantic base for extended models below

• Probabilistic Timed Automata (PTA)
— extend MDPs with clocks to express timed behavior

• Probabilistic Hybrid Automata (PHA)
— extend clocks of PTAs to more general continuous variables
— often described by differential equations

• Stochastic Activity Networks (SAN)

• Hybrid Stochastic Activity Networks (HSAN)
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Nondeterminism

42

• Some aspects of a system may not be probabilistic and should not 
be modeled probabilistically; for example:

• Concurrency -  scheduling of parallel components
—e.g. randomized distributed algorithms -  multiple 

probabilistic processes operating asynchronously
• Underspecification -  unknown model parameters

—e.g. a probabilistic communication protocol designed for 
message propagation delays of between dmin and dmax

• Unknown environments
—e.g. probabilistic security protocols -  unknown adversary

• Decision-making and control
—e.g. optimal resource management and optimal control

04/01/202
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Overview
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• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards
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Markov Decision Processes
• Formally, an MDP M is a tuple (S,sinit,Steps,L) where:

— S is a finite set of states (“state space”)
— sinit ∈ S is the initial state
— Steps : S → 2Act×Dist(S) is the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

— L : S → 2AP is a labelling with atomic propositions

• Notes:
— Steps(s) is always non-empty,

i.e. no deadlocks
— the use of actions to label

distributions is optional

s

44

1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a
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Simple MDP Example

s

45

1s0

s2

s3

0.01

0.99

1

1

1

{fail}

{succ}

{try}
start

1
send

stop

wait

• Simple communication protocol
— after one step, process starts trying to send a message
— then, a nondeterministic choice between: (a) waiting a step

because the channel is unready; (b) sending the message
— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart
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Modeling MDPs

46

• Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules basic components:

modules, variables, and commands

• Modules:
— components of the system being modelled
— a module represents a single MDP

module example

...

endmodule
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Modeling MDPs

47

• Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules basic components: modules,

variables, and commands

• Variables:
— finite-domain (bounded integer ranges or Booleans)
— local or global – anyone can read, only the owner can

modify
— variable valuation = state of the MDP

module example

s : [0..3] init 0;

...

endmodule
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Modeling MDPs

• Guarded Commands modeling language
— simple, textual, state-based language
— based on Reactive Modules
— basic components: modules, variables, and

commands

• Commands:
— describe the transitions between the states

+ 0.99: (s' = 3);

module example

s : [0..3] init 0;

...
[send] (s = 1) -> 0.01: (s' = 2)
...

endmodule

[act] exp -> p1: asgn11 & asgn12 & ... + ...

action guard probability update

+ pn: asgnn1 & ... ;

probability update

04/01/2024 Introduction to Model Checking
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Simple MDP Example

s1s0

s2

s3

0.01

0.99
1

1

1

{fail}

{try}
start send

stop

restart

module example

s : [0..3] init 0;
1 wait {succ}

[start] (s = 0) -> (s' = 1);
[wait] (s = 1) -> true;
[send] (s = 1) -> 0.01: (s' = 2) + 0.99: (s' = 3);
[restart] (s = 2) -> (s' = 0);
[stop] (s = 3) -> true;

endmodule

• Simple communication
protocol

04/01/2024 Introduction to Model Checking
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Example - Parallel Composition

1 1 1

s0 s t s t s t0 2

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2 1

1

1

1

1 0.51 0.5
1

0.5

1

0 0 0.5 0 1

1

0.5

0.5

0.5

0.5

1

0.5
0.5

1 0.5

s1 t0

0.5 0.5 0.5

1 0.5

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here

04/01/2024 Introduction to Model Checking
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Example - Parallel Composition
Asynchronous parallel
composition of two

3-state DTMCs

1 1 1

s0 S0 t0

s1

s2

t0 t1 t2 1

1

1

1

0.51 0.5
1

1

0.5

1

1
0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

1 0.5 1 0.5

0.5

1

S0 t1 S0 t2

S1 t0

S t2 0

0.5 S1 t1

0.5 S t2 1

S1 t2

S t2 2

module threestate

s : [0..2] init 0;

[] s = 0 -> (s' = 1);
[] s = 1 -> 0.5: (s' = s - 1)

+ 0.5: (s' = s + 1);
[] s > 1 -> true;

threestate[s = t] endmodule

|| copy

endmodule

module copy =

system
threestate

endsystem

Default parallel composition
on matching action labels
– can be omitted

04/01/2024 Introduction to Model Checking
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Paths and Probabilities

52

• A (finite or infinite) path through an MDP
— is a sequence of states and action/distribution pairs
— e.g. s0(a0,µ0)s1(a1,µ1)s2…
— such that (ai,µi) ∈ Steps(si) and µi(si+1) > 0 for all i≥0
— represents an execution (i.e. one possible behaviour) of the

system which the MDP is modelling
— note that a path resolves both types of choices:

nondeterministic and probabilistic

• To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices
— …which results in a Markov chain (DTMC)
— …for which we can define a probability measure over paths
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Overview

53

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards
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Adversaries

54

• An adversary resolves nondeterministic choice in an MDP
— also known as “schedulers”, “strategies” or “policies”

• Formally:
— an adversary A of an MDP M is a function mapping every finite

path ω= s0(a1,µ1)s1...sn to an element of Steps(sn)

• For each A can define a probability measure PrAs over paths
— constructed through an infinite state Markov chain (DTMC)
— states of the DTMC are the finite paths of A starting in state s
— the initial state is s (the path starting in s of length 0)
—PAs(ω,ω’)=µ(s) if ω’= ω(a, µ)s and A(ω)=(a,µ)
—PAs(ω,ω’)=0 otherwise
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Adversaries - Examples

— picks action c the first time
—
A1(s0s1)=(c,µc)

• Adversary A2
— picks action b the first time, then c
— A2(s0s1)=(b,µb),A2(s0s1s1)=(c,µc),

A2(s0s1s0s1)=(c,µc)

s1

55

s2

s30.5

1
1

• Consider the simple MDP below
— note that s1 is the only state for which |Steps(s)| > 1
— i.e. s1 is the only state for which an adversary makes a choice
— let µb and µc denote the probability distributions associated

with actions b and c in state s1

{heads}
• Adversary A1

{tails}

{init} a 1
s0
0.7b
0.3

c
0.5 a

a
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Adversaries - Examples

s1

s2

s3

0.5

0.5

1
1

• Fragment of DTMC for adversary A1
— A1 picks action c the first time

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a

s0
1 s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s3

0.5

s0s1
0.5

56

1

1
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Adversaries - Examples
• Fragment of DTMC for adversary A2

— A2 picks action b, then c

s1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a

s0
1

s0s1s0s1s2

s0s1s0s1s3
s0s1

0.7
s0s1s0

s0s1s1
0.3

1
0.5

s0s1s0s1
0.5

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

57
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Memoryless Adversaries

s1
s30.5

1
1

{tails}

{init} a 1
s0
0.7b
0.3

c
0.5 a

a
s1

s2 s2

s30.5

1
1

• Memoryless adversaries always pick same choice in a state
— also known as: positional, Markov, simple
— formally, for adversary A:
— A(s0(a1,µ1)s1...sn) depends only on sn
— resulting DTMC can be mapped to a |S|-state DTMC

• From previous example:
— adversary A1 (picks c in s1) is memoryless, A2 is not

{heads} {heads}

{tails}

{init} a 1
s0 c

0.5 a

a

58
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59

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

04/01/2024 Introduction to Model Checking



PCTL

60

• Temporal logic for describing properties of MDPs
— PCTL = Probabilistic Computation Tree Logic

• Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

• Example
— send → P≥0.95 [ true U≤10 deliver ]
— “if a message is sent, then the probability of it being delivered

within 10 steps is at least 0.95”
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PCTL Syntax

• PCTL
syntax:

—φ ::= true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state
formulas)

—ψ ::= � φ | φ U≤k φ | φ U φ (path
formulas)

— where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula
— path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”“next”

61
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PCTL Semantics for MDPs
• PCTL formulas interpreted over states of an MDP

— s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:
— for a state s of the MDP (S,sinit,P,L):
— s ⊨ a - a ∈ L(s)
— s ⊨ φ1 ∧ φ2 - s ⊨ φ1 and s ⊨ φ2
— s ⊨ ¬φ - s ⊨ φ is false

• Examples
— s ⊨ tails3

— s2 ⊨ heads ∧ ¬init
s

62

1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a
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PCTL Semantics for MDPs
• Semantics of path formulas:

— for a path ω = s0s1s2… in the MDP:
—ω ⊨ � φ
—ω ⊨ φ1 U≤k φ2
—ω ⊨ φ1 U φ2

- s1 ⊨ φ
- ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1
- ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:
—� ¬init

s0 s1 s3 s3

— ¬tails U heads

{init} {} {tails}{tails}

{} {} {heads}{heads}

s1 s1 s2 s2

s

63

1

s2

s3

0.5

0.5

1
1

{heads}

{tails}

{init} a 1
s0
0.7b
0.3

c
a

a{init}

s0
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PCTL Semantics for MDPs

• Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary A
— s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is true

for an outgoing path satisfies ~p for all adversaries A”
— formally s ⊨ P~p [ ψ ] ⇔ ProbA(s, ψ) ~p for all adversaries A
    where ProbA(s, ψ) = PrAs {ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ

64

ProbA(s, ψ) ~p
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Minimum andMaximum Probabilities

65

• Letting:
— pmax(s, ψ) = supA ProbA(s, ψ)
— pmin(s, ψ) = infA ProbA(s, ψ)

• We have:
— if ~∈ {≥,>}, then s ⊨ P~p [ ψ ]
— if ~∈ {<,≤}, then s ⊨ P~p [ ψ ]

- pmin(s, ψ) ~p
- pmax(s, ψ) ~p

• Model checking P~p[ψ ] reduces to the computation over all
adversaries of either:
— the minimum probability of ψ holding
— the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs
— memoryless adversaries suffice, i.e. there are always

memoryless adversaries Amin and Amax for which:
— ProbAmin(s, ψ) = pmin(s, ψ) and ProbAmax(s, ψ) = pmax(s, ψ)
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Overview

66

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards
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PCTL Model Checking

67

• Algorithm for PCTL model checking
• inputs: MDP M=(S,sinit,Steps,L), PCTL formula φ

— output: Sat(φ) = {s ∈ S | s ⊨ φ }= set of states satisfying φ

• What does it mean for an MDP D to satisfy a formula φ?
— sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S
— sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results
— e.g. compute the result of Pmax=? [à error ]
— e.g. compute result of Pmax=? [à ≤k error ] for 0≤k≤100
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PCTL Model Checking for MDPs
• Basic algorithm proceeds by induction on parse tree ofφ

— example:φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ]

• For the non-probabilistic operators:
— Sat(true) = S
— Sat(a) = {s ∈ S | a ∈ L(s) }
— Sat(¬φ) = S \ Sat(φ)
— Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ ψ ] operator
— need to compute the

probabilities Prob(s,ψ)
for all states s ∈ S

— focus here on the “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [ · U ·]

¬

fail fail

succtry
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Quantitative Properties

• For PCTL properties with P as the outermost operator
— quantitative form (two types): Pmin=? [ ψ ] and Pmax=? [ ψ ]
— i.e. “what is the minimum/maximum probability (over all

adversaries) that path formula ψ is true?”
— corresponds to an analysis of best-case or worst-case

behaviour of the system
— model checking is no harder since compute the values of

pmin(s, ψ) or pmax(s, ψ) anyway
— useful to spot patterns/trends

• Example: CSMA/CD protocol
— “min/max probability

that a message is sent
within the deadline”

69
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Some Real PCTL Examples

70

• Byzantine agreement protocol
— Pmin=? [ à (agreement ∧ rounds≤2) ]
— “what is the minimum probability that agreement is reached

within two rounds?”

• CSMA/CD communication protocol
— Pmax=? [ à collisions=k ]
— “what is the maximum probability of k collisions?”

• Self-stabilisation protocols
— Pmin=? [à ≤t stable ]
— “what is the minimum probability of reaching a stable state

within k steps?”
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PCTL Until for MDPs

• Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S
• First identify all states where the probability is 1 or 0

— “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states
(S?)
— either: solve linear programming problem
— or: approximate with an iterative solution method

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}
0.4

0.5

0.1

0.25

1

Example: P≥p [à a ]

≡

≥p
P [ true U a ]
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PCTL Until - Precomputation

• Identify all states where pmin(s, φ1 U φ2) is 1 or 0
— Syes = Sat(P≥1 [ φ1 U φ2 ]),Sno = Sat(¬ P>0 [ φ1 U φ2 ])

• Two graph-based precomputation algorithms:
— algorithm Prob1A computes Syes

• for all adversaries the probability of satisfying φ1 U φ2 is 1
— algorithm Prob0E computes Sno

• there exists an adversary for which the probability is 0

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes= Sat(P≥1 [à a ])

Sno = Sat(¬P>0 [à a ])

Example:
P≥p [à a ]
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Method 1 - Linear Programming

73

• Probabilities pmin(s, φ1 U φ2) for remaining states in the
set S?= S \ (Syes ∪ Sno) can be obtained as the unique
solution of the following linear programming (LP) problem:

• Simple case of a more general problem known as the
stochastic shortest path problem

• This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut

? xs subject to the constraint s :maximize å
xs £ åµ(s' ) × xs' + åµ(s' )

s'ÎS? s'ÎSyes

for all sÎS? and for all (a,µ)ÎSteps(s)

sÎS
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Example - PCTL Until (LP)
Let xi = pmin(si, à a)

Syes: x2=1, Sno: x3=0
For S?= {x0,x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5
● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1
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Syes

Sno
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Example - PCTL Until (LP)
Let xi = pmin(si, à a) Syes: x2=1,

Sno: x3=0 For S?= {x0, x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x1
1

12/3
x0

● x1 ≤ 0.2·x0 + 0.8

x1

x0 0
0 1

1

0.8

x0 0
0

x1
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0
0

1

1

x0 ≤ x1

x0 ≤ 2/3
x1 ≤ 0.2·x0

+ 0.8
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Example - PCTL Until (LP)

Let xi = pmin(si, F a) Syes:
x2=1, Sno: x3=0
For S?= {x0, x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

0.8

2/3 1

max
Solution: (x0, x1)
= (2/3, 14/15)
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Example - PCTL Until (LP)

Let xi = pmin(si, à a)
Syes: x2=1, Sno: x3=0

For S?= {x0, x1} :

Maximise x0+x1 subject to constraints:
● x0 ≤ x1
● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x00
0

x1
1

0.8

2/3 1

max
Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1
x0 ≤ 2/3
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Method 2 – Value Iteration

78

• For probabilities pmin(s, φ1 U φ2) it can be shown
that:
— pmin(s, φ1 U φ2) = limn→∞ xs(n) where:

• This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

(n)

if s Î Syes

if s Î Sno

if s Î S? and n = 0

(a,µ)ÎSteps(s) s'

1

0
0
æ

ès'ÎS
çåµ(s' )× xç

ö

ø

(n-1)÷÷ if s Î S? and n > 0

xs = í

ì
ï
ï
ï

î

ï
ïminï

04/01/2024 Introduction to Model Checking



Example - PCTL Until (Value Iteration)
Compute: pmin(si, à a)

Syes= {x2}, Sno={x3}, S? = {x0, x1}
(n),x (n),x (n),x (n) ]
0 1 2 3

[ x
n=0: [ 0, 0, 1, 0 ]

n=1
:

n=2
:

[ min(0,0.25·0+0.5),
0.1·0+0.5·0+0.4, 1, 0 ]

= [ 0, 0.4, 1, 0 ]
[ min(0.4,0.25·0+0.5),
0.1·0+0.5·0.4+0.4, 1, 0 ]
= [ 0.4, 0.6, 1, 0 ]

n=3: …

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1
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Syes

Sno
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Example - PCTL Until (Value Iteration)
(n) (n) (n) (n)[ x0 ,x1 ,x2 ,x3 ]

n=0: [ 0.000000, 0.000000, 1, 0 ]
n=1: [ 0.000000, 0.400000, 1, 0 ]
n=2: [ 0.400000, 0.600000, 1, 0 ]
n=3: [ 0.600000, 0.740000, 1, 0 ]
n=4: [ 0.650000, 0.830000, 1, 0 ]
n=5: [ 0.662500, 0.880000, 1, 0 ]
n=6: [ 0.665625, 0.906250, 1, 0 ]
n=7: [ 0.666406, 0.919688, 1, 0 ]
n=8: [ 0.666602, 0.926484, 1, 0 ]
n=9: [ 0.666650, 0.929902, 1, 0 ]

n=20
:
n=21
:

…
[ 0.666667, 0.933332, 1, 0 ]

[ 0.666667, 0.933332, 1, 0 ]
≈ [ 2/3, 14/15, 1, 0 ]

s0

s1 s2

s3
0.5

0.25

1
1

1

{a}

0.4

0.5

0.1

0.25

1
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Syes

Sno
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Example - Value Iteration + LP

n=0:
n=1:
n=2:
n=3:
n=4:
n=5:
n=6:
n=7:
n=8:
n=9:

n=20:
n=21:

(n) (n) (n) (n)[ x0 ,x1 ,x2 ,x3 ]
[ 0.000000, 0.000000, 1, 0 ]
[ 0.000000, 0.400000, 1, 0 ]
[ 0.400000, 0.600000, 1, 0 ]
[ 0.600000, 0.740000, 1, 0 ]
[ 0.650000, 0.830000, 1, 0 ]
[ 0.662500, 0.880000, 1, 0 ]
[ 0.665625, 0.906250, 1, 0 ]
[ 0.666406, 0.919688, 1, 0 ]
[ 0.666602, 0.926484, 1, 0 ]
[ 0.666650, 0.929902, 1, 0 ]

…
[ 0.666667, 0.933332, 1, 0 ]
[ 0.666667, 0.933332, 1, 0 ]
≈ [ 2/3, 14/15, 1, 0 ]

x0

81

x1

0
0

2/3

1
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PCTL Model Checking - Summary

82

• Computation of set Sat(Φ) for MDP M and PCTL formulaΦ
— recursive descent of parse tree
— combination of graph algorithms, numerical computation

• Probabilistic operator P:
— � Φ : one matrix-vector multiplication, O(|S|2)
—Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)
—Φ1 U Φ2 : linear programming problem, polynomial in

|S| (assuming use of linear programming)

• Complexity:
— linear in |Φ| and polynomial in |S|
— S is states in MDP, assume |Steps(s)| is constant
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Overview

83

• Basic concepts

• Probabilistic Model Checking

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards
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Costs and Rewards

84

• We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

• Some examples:
— elapsed time, power consumption, size of message queue,

number of messages successfully delivered, net profit, …

• Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise

costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless
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Reward-Based Properties

85

• Properties of MDPs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties
— the expected value of the reward at some time point

• Cumulative properties
— the expected cumulated reward over some period
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PCTL and Rewards
• Extend PCTL to incorporate reward-based properties

— add an R operator, which is similar to the existing P operator

—φ ::= … | P~p [ ψ ] | R~r [ I=k ] | R~r [ C≤k ] | R~r [à φ ]

— where r ∈ ℝ≥0, ~∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

86
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Types of Reward Formulas

87

• Instantaneous: R~r [ I=k ]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [ C≤k ]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

• Reachability: R~r [à φ ]
— “the expected reward cumulated before reaching a state

satisfying φ is ~r”
— e.g. “the expected time for the algorithm to terminate”
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Model Checking MDP Reward Formulas
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• Instantaneous: R~r [ I=k ]
— similar to the computation of bounded until probabilities
— solution of recursive equations

• Cumulative: R~r [ C≤k ]
— extension of bounded until computation
— solution of recursive equations

• Reachability: R~r [à φ ]
— similar to the case for P operator and until
— graph-based precomputation (identify∞ - reward states)
— then linear programming problem (or value iteration)
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Summary
• Basic concepts

— Design and Validation

— Formal Verification

— Model Checking

• Probabilistic Model Checking

• Markov Decision Processes (MDPs)

— probabilistic as well as nondeterministic behaviors

— to model concurrency, underspecification, …

— easy to model using guarded commands

• Adversaries Resolve Nondeterminism in an MDP

— induce a probability space over paths

— consider minimum/maximum probabilities over all adversaries

• Property Specifications

— probabilistic extensions of temporal logic, e.g. PCTL

— also: the expected value of costs/rewards

— quantify overall adversaries

• Model Checking Algorithms

— covered two basic techniques for MDPs: linear programming
or value iteration
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